colobot/src/object/task/taskgoto.cpp

2203 lines
64 KiB
C++
Raw Normal View History

/*
* This file is part of the Colobot: Gold Edition source code
2021-09-11 13:52:34 +00:00
* Copyright (C) 2001-2021, Daniel Roux, EPSITEC SA & TerranovaTeam
2015-08-22 14:40:02 +00:00
* http://epsitec.ch; http://colobot.info; http://github.com/colobot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://gnu.org/licenses
*/
#include "object/task/taskgoto.h"
#include "common/event.h"
#include "common/global.h"
2016-03-28 19:42:25 +00:00
#include "common/image.h"
#include "common/make_unique.h"
2012-09-11 21:11:34 +00:00
#include "graphics/engine/terrain.h"
#include "graphics/engine/water.h"
#include "math/geometry.h"
#include "object/object_manager.h"
#include "object/old_object.h"
2015-07-10 17:03:27 +00:00
#include "object/interface/transportable_object.h"
2015-08-17 11:19:21 +00:00
#include "object/subclass/base_alien.h"
#include "physics/physics.h"
#include <string.h>
const float FLY_DIST_GROUND = 80.0f; // minimum distance to remain on the ground
const float FLY_DEF_HEIGHT = 50.0f; // default flying height
// Settings that define goto() accuracy:
const float BM_DIM_STEP = 5.0f; // Size of one pixel on the bitmap. Setting 5 means that 5x5 square (in game units) will be represented by 1 px on the bitmap. Decreasing this value will make a bigger bitmap, and may increase accuracy. TODO: Check how it actually impacts goto() accuracy
const float BEAM_ACCURACY = 5.0f; // higher value = more accurate, but slower
const float SAFETY_MARGIN = 0.5f; // Smallest distance between two objects. Smaller = less "no route to destination", but higher probability of collisions between objects.
// Changing SAFETY_MARGIN (old value was 4.0f) seems to have fixed many issues with goto(). TODO: maybe we could make it even smaller? Did changing it introduce any new bugs?
// Object's constructor.
2015-08-15 18:29:59 +00:00
CTaskGoto::CTaskGoto(COldObject* object) : CForegroundTask(object)
{
2015-08-17 20:40:52 +00:00
m_bmArray = nullptr;
}
// Object's destructor.
CTaskGoto::~CTaskGoto()
{
BitmapClose();
2016-03-28 19:42:25 +00:00
if (m_engine->GetDebugGoto() && m_object->GetSelect())
m_engine->SetDebugGotoBitmap(std::move(nullptr));
}
// Management of an event.
bool CTaskGoto::EventProcess(const Event &event)
{
glm::vec3 pos, goal;
glm::vec2 rot, repulse;
2012-09-11 21:11:34 +00:00
float a, g, dist, linSpeed, cirSpeed, h, hh, factor, dir;
Error ret;
2012-09-11 21:11:34 +00:00
if ( event.type != EVENT_FRAME ) return true;
2016-03-28 18:25:07 +00:00
if (m_engine->GetDebugGoto())
{
auto AdjustPoint = [&](glm::vec3 p) -> glm::vec3
2016-03-28 18:25:07 +00:00
{
m_terrain->AdjustToFloor(p);
p.y += 2.0f;
return p;
};
std::vector<Gfx::VertexCol> debugLine;
if (m_bmTotal > 0)
{
Gfx::Color color = Gfx::Color(0.0f, 1.0f, 0.0f);
for (int i = 0; i < m_bmTotal; i++)
{
if (i > m_bmIndex-1)
color = Gfx::Color(1.0f, 0.0f, 0.0f);
debugLine.push_back({ AdjustPoint(m_bmPoints[i]), color });
2016-03-28 18:25:07 +00:00
}
m_engine->AddDebugGotoLine(debugLine);
debugLine.clear();
}
Gfx::Color color = Gfx::Color(0.0f, 0.0f, 1.0f);
debugLine.push_back({ m_object->GetPosition(), color });
debugLine.push_back({ AdjustPoint(m_bmTotal > 0 && m_bmIndex <= m_bmTotal && m_phase != TGP_BEAMSEARCH ? m_bmPoints[m_bmIndex] : m_goal), color });
2016-03-28 18:25:07 +00:00
m_engine->AddDebugGotoLine(debugLine);
2016-03-28 19:42:25 +00:00
if (m_object->GetSelect() && m_bmChanged)
{
if (m_bmArray != nullptr)
{
std::unique_ptr<CImage> debugImage = MakeUnique<CImage>(glm::ivec2(m_bmSize, m_bmSize));
2016-03-28 19:42:25 +00:00
debugImage->Fill(Gfx::IntColor(255, 255, 255, 255));
for (int x = 0; x < m_bmSize; x++)
{
for (int y = 0; y < m_bmSize; y++)
{
bool a = BitmapTestDot(0, x, y);
bool b = BitmapTestDot(1, x, y);
if (a || b)
{
Gfx::Color c = Gfx::Color(0.0f, 0.0f, 0.0f, 1.0f);
if (b) c = Gfx::Color(0.0f, 0.0f, 1.0f, 1.0f);
debugImage->SetPixel({ x, y }, c);
2016-03-28 19:42:25 +00:00
}
}
}
m_engine->SetDebugGotoBitmap(std::move(debugImage));
}
m_bmChanged = false;
}
2016-03-28 18:25:07 +00:00
}
if ( m_engine->GetPause() ) return true;
// Momentarily stationary object (ant on the back)?
2015-08-17 11:19:21 +00:00
CBaseAlien* alien = dynamic_cast<CBaseAlien*>(m_object);
if ( alien != nullptr && alien->GetFixed() )
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
return true;
}
if ( m_error != ERR_OK ) return false;
if ( m_bWorm )
{
WormFrame(event.rTime);
}
if ( m_phase == TGP_BEAMLEAK ) // leak?
{
m_leakTime += event.rTime;
pos = m_object->GetPosition();
rot.x = m_leakPos.x-pos.x;
rot.y = m_leakPos.z-pos.z;
dist = glm::length(glm::vec2(rot.x, rot.y));
if (dist != 0)
{
rot.x /= dist;
rot.y /= dist;
}
a = m_object->GetRotationY();
g = Math::RotateAngle(rot.x, -rot.y); // CW !
a = Math::Direction(a, g)*1.0f;
cirSpeed = a;
if ( cirSpeed > 1.0f ) cirSpeed = 1.0f;
if ( cirSpeed < -1.0f ) cirSpeed = -1.0f;
a = Math::NormAngle(a);
if ( a > Math::PI*0.5f && a < Math::PI*1.5f )
{
linSpeed = 1.0f; // obstacle behind -> advance
cirSpeed = -cirSpeed;
}
else
{
linSpeed = -1.0f; // obstacle in front -> back
}
if ( m_bLeakRecede )
{
linSpeed = -1.0f;
cirSpeed = 0.0f;
}
m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right
m_physics->SetMotorSpeedX(linSpeed); // advance
return true;
}
if ( m_phase == TGP_BEAMSEARCH ) // search path?
{
if ( m_bmStep == 0 )
{
// Frees the area around the departure.
BitmapClearCircle(m_object->GetPosition(), BM_DIM_STEP*1.8f);
}
pos = m_object->GetPosition();
2015-08-17 20:40:52 +00:00
if ( m_bmCargoObject == nullptr )
{
goal = m_goal;
dist = 0.0f;
}
else
{
goal = m_goalObject;
dist = TAKE_DIST+2.0f;
2015-06-29 21:05:31 +00:00
if ( m_bmCargoObject->GetType() == OBJECT_BASE ) dist = 12.0f;
}
ret = BeamSearch(pos, goal, dist);
if ( ret == ERR_OK )
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetLand() ) m_phase = TGP_BEAMWCOLD;
else m_phase = TGP_BEAMGOTO;
m_bmIndex = 0;
m_bmWatchDogPos = m_object->GetPosition();
m_bmWatchDogTime = 0.0f;
}
if ( ret == ERR_GOTO_IMPOSSIBLE || ret == ERR_GOTO_ITER )
{
m_error = ret;
return false;
}
return true;
}
if ( m_phase == TGP_BEAMWCOLD ) // expects cooled reactor?
{
return true;
}
if ( m_phase == TGP_BEAMUP ) // off?
{
m_physics->SetMotorSpeedY(1.0f); // up
return true;
}
if ( m_phase == TGP_BEAMGOTO ) // goto dot list? (?)
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetCollision() ) // collision?
{
m_physics->SetCollision(false); // there's more
}
pos = m_object->GetPosition();
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude == 0.0f )
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetLand() )
{
m_physics->SetMotorSpeedY(0.0f);
}
else
{
m_physics->SetMotorSpeedY(-1.0f);
}
}
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude > 0.0f )
{
goal = m_bmPoints[m_bmIndex];
goal.y = pos.y;
2012-09-11 21:11:34 +00:00
h = m_terrain->GetHeightToFloor(goal, true, true);
dist = Math::DistanceProjected(pos, goal);
if ( dist != 0.0f ) // anticipates?
{
2012-09-11 21:11:34 +00:00
linSpeed = m_physics->GetLinMotionX(MO_REASPEED);
linSpeed /= m_physics->GetLinMotionX(MO_ADVSPEED);
goal.x = pos.x + (goal.x-pos.x)*linSpeed*20.0f/dist;
goal.z = pos.z + (goal.z-pos.z)*linSpeed*20.0f/dist;
}
goal.y = pos.y;
2012-09-11 21:11:34 +00:00
hh = m_terrain->GetHeightToFloor(goal, true, true);
h = Math::Min(h, hh);
linSpeed = 0.0f;
if ( h < m_altitude-1.0f )
{
linSpeed = 0.2f+((m_altitude-1.0f)-h)*0.1f; // up
if ( linSpeed > 1.0f ) linSpeed = 1.0f;
}
if ( h > m_altitude+1.0f )
{
linSpeed = -0.2f; // down
}
m_physics->SetMotorSpeedY(linSpeed);
}
rot.x = m_bmPoints[m_bmIndex].x-pos.x;
rot.y = m_bmPoints[m_bmIndex].z-pos.z;
dist = glm::length(glm::vec2(rot.x, rot.y));
rot.x /= dist;
rot.y /= dist;
a = m_object->GetRotationY();
g = Math::RotateAngle(rot.x, -rot.y); // CW !
cirSpeed = Math::Direction(a, g)*2.0f;
if ( cirSpeed > 1.0f ) cirSpeed = 1.0f;
if ( cirSpeed < -1.0f ) cirSpeed = -1.0f;
if ( dist < 4.0f ) cirSpeed *= dist/4.0f; // so close -> turns less
if ( m_bmIndex == m_bmTotal ) // last point?
{
2012-09-11 21:11:34 +00:00
linSpeed = dist/(m_physics->GetLinStopLength()*1.5f);
if ( linSpeed > 1.0f ) linSpeed = 1.0f;
}
else
{
linSpeed = 1.0f; // dark without stopping
}
linSpeed *= 1.0f-(1.0f-0.3f)*fabs(cirSpeed);
//? if ( dist < 20.0f && fabs(cirSpeed) >= 0.5f )
if ( fabs(cirSpeed) >= 0.2f )
{
linSpeed = 0.0f; // turns first, then advance
}
dist = Math::DistanceProjected(pos, m_bmWatchDogPos);
if ( dist < 1.0f && linSpeed != 0.0f )
{
m_bmWatchDogTime += event.rTime;
}
else
{
m_bmWatchDogTime = 0.0f;
m_bmWatchDogPos = pos;
}
if ( m_bmWatchDogTime >= 1.0f ) // immobile for a long time?
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
BeamStart(); // we start all
return true;
}
m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right
m_physics->SetMotorSpeedX(linSpeed); // advance
return true;
}
if ( m_phase == TGP_BEAMDOWN ) // landed?
{
m_physics->SetMotorSpeedY(-0.5f); // tomb
return true;
}
if ( m_phase == TGP_LAND ) // landed?
{
m_physics->SetMotorSpeedY(-0.5f); // tomb
return true;
}
if ( m_goalMode == TGG_EXPRESS )
{
if ( m_crashMode == TGC_HALT )
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetCollision() ) // collision?
{
m_physics->SetCollision(false); // there's more
m_error = ERR_STOP;
return true;
}
}
pos = m_object->GetPosition();
if ( m_altitude > 0.0f )
{
2012-09-11 21:11:34 +00:00
h = m_terrain->GetHeightToFloor(pos, true, true);
linSpeed = 0.0f;
if ( h < m_altitude )
{
linSpeed = 0.1f; // up
}
if ( h > m_altitude )
{
linSpeed = -0.2f; // down
}
m_physics->SetMotorSpeedY(linSpeed);
}
rot.x = m_goal.x-pos.x;
rot.y = m_goal.z-pos.z;
a = m_object->GetRotationY();
g = Math::RotateAngle(rot.x, -rot.y); // CW !
cirSpeed = Math::Direction(a, g)*1.0f;
if ( cirSpeed > 1.0f ) cirSpeed = 1.0f;
if ( cirSpeed < -1.0f ) cirSpeed = -1.0f;
m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right
m_physics->SetMotorSpeedX(1.0f); // advance
return true;
}
if ( m_phase != TGP_TURN &&
2015-08-12 17:09:35 +00:00
m_object->Implements(ObjectInterfaceType::Flying) &&
m_altitude > 0.0f )
{
pos = m_object->GetPosition();
dist = Math::DistanceProjected(m_goal, pos);
factor = (dist-20.0f)/20.0f;
if ( factor < 0.0f ) factor = 0.0f;
if ( factor > 1.0f ) factor = 1.0f;
h = m_terrain->GetHeightToFloor(m_object->GetPosition(), true, true);
linSpeed = 0.0f;
if ( h < (m_altitude-0.5f)*factor && factor == 1.0f )
{
linSpeed = 0.1f; // up
}
if ( h > m_altitude*factor )
{
linSpeed = -0.2f; // down
}
ComputeFlyingRepulse(dir);
linSpeed += dir*0.2f;
m_physics->SetMotorSpeedY(linSpeed);
}
if ( m_phase == TGP_ADVANCE ) // going towards the goal?
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetCollision() ) // collision?
{
m_physics->SetCollision(false); // there's more
m_time = 0.0f;
m_phase = TGP_CRWAIT;
return true;
}
pos = m_object->GetPosition();
rot.x = m_goal.x-pos.x;
rot.y = m_goal.z-pos.z;
dist = glm::length(glm::vec2(rot.x, rot.y));
rot.x /= dist;
rot.y /= dist;
ComputeRepulse(repulse);
rot.x += repulse.x*2.0f;
rot.y += repulse.y*2.0f;
a = m_object->GetRotationY();
g = Math::RotateAngle(rot.x, -rot.y); // CW !
cirSpeed = Math::Direction(a, g)*1.0f;
2015-08-12 17:09:35 +00:00
//? if ( m_object->Implements(ObjectInterfaceType::Flying) &&
2012-09-11 21:11:34 +00:00
//? m_physics->GetLand() ) // flying on the ground?
//? {
//? cirSpeed *= 4.0f; // more fishing
//? }
if ( cirSpeed > 1.0f ) cirSpeed = 1.0f;
if ( cirSpeed < -1.0f ) cirSpeed = -1.0f;
dist = Math::DistanceProjected(m_goal, pos);
2012-09-11 21:11:34 +00:00
linSpeed = dist/(m_physics->GetLinStopLength()*1.5f);
2015-08-12 17:09:35 +00:00
//? if ( m_object->Implements(ObjectInterfaceType::Flying) &&
2012-09-11 21:11:34 +00:00
//? m_physics->GetLand() ) // flying on the ground?
//? {
//? linSpeed *= 8.0f; // more fishing
//? }
if ( linSpeed > 1.0f ) linSpeed = 1.0f;
linSpeed *= 1.0f-(1.0f-0.3f)*fabs(cirSpeed);
if ( dist < 20.0f && fabs(cirSpeed) >= 0.5f )
{
linSpeed = 0.0f; // turns first, then advance
}
m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right
m_physics->SetMotorSpeedX(linSpeed); // advance
}
if ( m_phase == TGP_TURN || // turns to the object?
m_phase == TGP_CRTURN || // turns after collision?
m_phase == TGP_CLTURN ) // turns after collision?
{
a = m_object->GetRotationY();
g = m_angle;
cirSpeed = Math::Direction(a, g)*1.0f;
if ( cirSpeed > 1.0f ) cirSpeed = 1.0f;
if ( cirSpeed < -1.0f ) cirSpeed = -1.0f;
m_physics->SetMotorSpeedZ(cirSpeed); // turns left / right
}
if ( m_phase == TGP_CRWAIT || // waits after collision?
m_phase == TGP_CLWAIT ) // waits after collision?
{
m_time += event.rTime;
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
}
if ( m_phase == TGP_CRADVANCE ) // advance after collision?
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetCollision() ) // collision?
{
m_physics->SetCollision(false); // there's more
m_time = 0.0f;
m_phase = TGP_CLWAIT;
return true;
}
m_physics->SetMotorSpeedX(0.5f); // advance mollo
}
if ( m_phase == TGP_CLADVANCE ) // advance after collision?
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetCollision() ) // collision?
{
m_physics->SetCollision(false); // there's more
m_time = 0.0f;
m_phase = TGP_CRWAIT;
return true;
}
m_physics->SetMotorSpeedX(0.5f); // advance mollo
}
if ( m_phase == TGP_MOVE ) // final advance?
{
m_bmTimeLimit -= event.rTime;
m_physics->SetMotorSpeedX(1.0f);
}
return true;
}
// Sought a target for the worm.
CObject* CTaskGoto::WormSearch(glm::vec3 &impact)
{
glm::vec3 iPos = m_object->GetPosition();
float min = 1000000.0f;
CObject* best = nullptr;
for (CObject* obj : CObjectManager::GetInstancePointer()->GetAllObjects())
{
ObjectType oType = obj->GetType();
if ( oType != OBJECT_MOBILEfa &&
oType != OBJECT_MOBILEta &&
oType != OBJECT_MOBILEwa &&
oType != OBJECT_MOBILEia &&
2017-11-16 17:43:45 +00:00
oType != OBJECT_MOBILEfb &&
oType != OBJECT_MOBILEtb &&
oType != OBJECT_MOBILEwb &&
oType != OBJECT_MOBILEib &&
oType != OBJECT_MOBILEfc &&
oType != OBJECT_MOBILEtc &&
oType != OBJECT_MOBILEwc &&
oType != OBJECT_MOBILEic &&
oType != OBJECT_MOBILEfi &&
oType != OBJECT_MOBILEti &&
oType != OBJECT_MOBILEwi &&
oType != OBJECT_MOBILEii &&
oType != OBJECT_MOBILEfs &&
oType != OBJECT_MOBILEts &&
oType != OBJECT_MOBILEws &&
oType != OBJECT_MOBILEis &&
oType != OBJECT_MOBILErt &&
oType != OBJECT_MOBILErc &&
oType != OBJECT_MOBILErr &&
oType != OBJECT_MOBILErs &&
oType != OBJECT_MOBILEsa &&
oType != OBJECT_MOBILEtg &&
oType != OBJECT_MOBILEft &&
oType != OBJECT_MOBILEtt &&
oType != OBJECT_MOBILEwt &&
oType != OBJECT_MOBILEit &&
2018-12-23 06:04:06 +00:00
oType != OBJECT_MOBILErp &&
oType != OBJECT_MOBILEst &&
oType != OBJECT_MOBILEdr &&
oType != OBJECT_DERRICK &&
oType != OBJECT_STATION &&
oType != OBJECT_FACTORY &&
oType != OBJECT_REPAIR &&
oType != OBJECT_DESTROYER &&
oType != OBJECT_CONVERT &&
oType != OBJECT_TOWER &&
oType != OBJECT_RESEARCH &&
oType != OBJECT_RADAR &&
oType != OBJECT_INFO &&
oType != OBJECT_ENERGY &&
oType != OBJECT_LABO &&
oType != OBJECT_NUCLEAR &&
oType != OBJECT_PARA &&
oType != OBJECT_SAFE &&
oType != OBJECT_HUSTON ) continue;
if ( obj->GetVirusMode() ) continue; // object infected?
if (obj->GetCrashSphereCount() == 0) continue;
glm::vec3 oPos = obj->GetFirstCrashSphere().sphere.pos;
float distance = Math::DistanceProjected(oPos, iPos);
if (distance < min)
{
min = distance;
best = obj;
}
}
if ( best == nullptr ) return nullptr;
impact = best->GetPosition();
return best;
}
// Contaminate objects near the worm.
void CTaskGoto::WormFrame(float rTime)
{
CObject* pObj;
glm::vec3 impact, pos;
float dist;
m_wormLastTime += rTime;
if ( m_wormLastTime >= 0.5f )
{
m_wormLastTime = 0.0f;
pObj = WormSearch(impact);
2015-08-17 20:40:52 +00:00
if ( pObj != nullptr )
{
pos = m_object->GetPosition();
dist = glm::distance(pos, impact);
if ( dist <= 15.0f )
{
pObj->SetVirusMode(true); // bam, infected!
}
}
}
}
// Assigns the goal was achieved.
// "dist" is the distance that needs to go far to make a deposit or object.
Error CTaskGoto::Start(glm::vec3 goal, float altitude,
TaskGotoGoal goalMode, TaskGotoCrash crashMode)
{
glm::vec3 pos;
CObject* target;
ObjectType type;
float dist;
int x, y;
2012-09-11 21:11:34 +00:00
type = m_object->GetType();
if ( goalMode == TGG_DEFAULT )
{
goalMode = TGG_STOP;
if ( type == OBJECT_MOTHER ||
type == OBJECT_ANT ||
type == OBJECT_SPIDER ||
type == OBJECT_WORM )
{
goalMode = TGG_EXPRESS;
}
}
if ( crashMode == TGC_DEFAULT )
{
//? crashMode = TGC_RIGHTLEFT;
crashMode = TGC_BEAM;
if ( type == OBJECT_MOTHER ||
type == OBJECT_ANT ||
type == OBJECT_SPIDER ||
type == OBJECT_WORM ||
type == OBJECT_BEE )
{
crashMode = TGC_HALT;
}
}
m_altitude = altitude;
m_goalMode = goalMode;
m_crashMode = crashMode;
m_goalObject = goal;
m_goal = goal;
m_bTake = false;
m_phase = TGP_ADVANCE;
m_error = ERR_OK;
m_try = 0;
2015-08-17 20:40:52 +00:00
m_bmCargoObject = nullptr;
m_bmFinalMove = 0.0f;
pos = m_object->GetPosition();
dist = Math::DistanceProjected(pos, m_goal);
if ( dist < 10.0f && m_crashMode == TGC_BEAM )
{
m_crashMode = TGC_RIGHTLEFT;
}
m_bWorm = false;
if ( type == OBJECT_WORM )
{
m_bWorm = true;
m_wormLastTime = 0.0f;
}
m_bApprox = false;
if ( type == OBJECT_HUMAN ||
type == OBJECT_TECH ||
type == OBJECT_MOTHER ||
type == OBJECT_ANT ||
type == OBJECT_SPIDER ||
type == OBJECT_BEE ||
type == OBJECT_WORM ||
type == OBJECT_MOBILErt ||
type == OBJECT_MOBILErc ||
type == OBJECT_MOBILErr ||
2018-12-23 06:04:06 +00:00
type == OBJECT_MOBILErs ||
type == OBJECT_MOBILErp )
{
m_bApprox = true;
}
if ( !m_bApprox && m_crashMode != TGC_BEAM )
{
target = SearchTarget(goal, 1.0f);
2015-08-17 20:40:52 +00:00
if ( target != nullptr )
{
m_goal = target->GetPosition();
dist = 0.0f;
if ( !AdjustBuilding(m_goal, 1.0f, dist) )
{
dist = 0.0f;
AdjustTarget(target, m_goal, dist);
}
m_bTake = true; // object was taken on arrival (final rotation)
}
}
m_lastDistance = 1000.0f;
m_physics->SetCollision(false);
if ( m_crashMode == TGC_BEAM ) // with the algorithm of rays?
{
target = SearchTarget(goal, 1.0f);
2015-08-17 20:40:52 +00:00
if ( target != nullptr )
{
m_goal = target->GetPosition();
dist = 4.0f;
if ( AdjustBuilding(m_goal, 1.0f, dist) )
{
m_bmFinalMove = dist;
}
else
{
dist = 4.0f;
if ( AdjustTarget(target, m_goal, dist) )
{
2015-06-29 21:05:31 +00:00
m_bmCargoObject = target; // cargo on the ground
}
else
{
m_bmFinalMove = dist;
}
}
m_bTake = true; // object was taken on arrival (final rotation)
}
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude == 0.0f )
{
pos = m_object->GetPosition();
dist = Math::DistanceProjected(pos, m_goal);
if ( dist > FLY_DIST_GROUND ) // over 20 meters?
{
m_altitude = FLY_DEF_HEIGHT; // default altitude
}
}
BeamStart();
2015-08-17 20:40:52 +00:00
if ( m_bmCargoObject == nullptr )
{
2012-09-11 21:11:34 +00:00
x = static_cast<int>((m_goal.x+1600.0f)/BM_DIM_STEP);
y = static_cast<int>((m_goal.z+1600.0f)/BM_DIM_STEP);
if ( BitmapTestDot(0, x, y) ) // arrival occupied?
{
m_error = ERR_GOTO_BUSY;
return m_error;
}
}
}
return ERR_OK;
}
// Indicates whether the action is finished.
Error CTaskGoto::IsEnded()
{
glm::vec3 pos;
float limit, angle = 0.0f, h, level;
volatile float dist; //fix for issue #844
2012-09-11 21:11:34 +00:00
if ( m_engine->GetPause() ) return ERR_CONTINUE;
if ( m_error != ERR_OK ) return m_error;
pos = m_object->GetPosition();
if ( m_phase == TGP_BEAMLEAK ) // leak?
{
if ( m_leakTime >= m_leakDelay )
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
BeamInit();
m_phase = TGP_BEAMSEARCH; // will seek the path
}
return ERR_CONTINUE;
}
if ( m_phase == TGP_BEAMSEARCH ) // search path?
{
return ERR_CONTINUE;
}
if ( m_phase == TGP_BEAMWCOLD ) // expects cool reactor?
{
if ( m_altitude != 0.0f &&
(m_object->Implements(ObjectInterfaceType::JetFlying) && dynamic_cast<CJetFlyingObject*>(m_object)->GetReactorRange() < 1.0f) ) return ERR_CONTINUE;
m_phase = TGP_BEAMUP;
}
if ( m_phase == TGP_BEAMUP ) // off?
{
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude > 0.0f )
{
2012-09-11 21:11:34 +00:00
level = m_terrain->GetFloorLevel(pos, true, true);
h = level+m_altitude-20.0f;
2012-09-11 21:11:34 +00:00
limit = m_terrain->GetFlyingMaxHeight();
if ( h > limit ) h = limit;
if ( pos.y < h-1.0f ) return ERR_CONTINUE;
m_physics->SetMotorSpeedY(0.0f); // stops the ascent
}
m_phase = TGP_BEAMGOTO;
}
if ( m_phase == TGP_BEAMGOTO ) // goto dot list ?
{
if ( m_altitude != 0.0f &&
(m_object->Implements(ObjectInterfaceType::JetFlying) && dynamic_cast<CJetFlyingObject*>(m_object)->GetReactorRange() < 0.1f) ) // overheating?
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
m_physics->SetMotorSpeedY(-1.0f); // tomb
m_phase = TGP_BEAMWCOLD;
return ERR_CONTINUE;
}
2012-09-11 21:11:34 +00:00
if ( m_physics->GetLand() ) // on the ground?
{
limit = 1.0f;
}
else // in flight?
{
limit = 2.0f;
if ( m_bmIndex < m_bmTotal ) limit *= 2.0f; // intermediate point
}
if ( m_bApprox ) limit = 2.0f;
if ( fabs(pos.x - m_bmPoints[m_bmIndex].x) < limit &&
fabs(pos.z - m_bmPoints[m_bmIndex].z) < limit )
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
m_bmIndex = BeamShortcut();
if ( m_bmIndex > m_bmTotal )
{
m_phase = TGP_BEAMDOWN;
}
}
}
if ( m_phase == TGP_BEAMDOWN ) // landed?
{
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude > 0.0f )
{
2012-09-11 21:11:34 +00:00
if ( !m_physics->GetLand() ) return ERR_CONTINUE;
m_physics->SetMotorSpeedY(0.0f); // stops the descent
m_altitude = 0.0f;
m_phase = TGP_BEAMGOTO; // advance finely on the ground to finish
m_bmIndex = m_bmTotal;
return ERR_CONTINUE;
}
if ( m_bTake )
{
m_angle = Math::RotateAngle(m_goalObject.x-pos.x, pos.z-m_goalObject.z);
m_phase = TGP_TURN;
}
else
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
return ERR_STOP;
}
}
if ( m_goalMode == TGG_EXPRESS )
{
dist = Math::DistanceProjected(m_goal, pos);
float margin = 10.0f;
if ( m_object->Implements(ObjectInterfaceType::Flying) ) margin = 20.0f;
if ( dist < margin && dist > m_lastDistance )
{
return ERR_STOP;
}
m_lastDistance = dist;
}
if ( m_phase == TGP_ADVANCE ) // going towards the goal?
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetLand() ) limit = 0.1f; // on the ground
else limit = 1.0f; // flying
if ( m_bApprox ) limit = 2.0f;
if ( fabs(pos.x - m_goal.x) < limit &&
fabs(pos.z - m_goal.z) < limit )
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
m_phase = TGP_LAND;
}
}
if ( m_phase == TGP_LAND ) // landed?
{
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude > 0.0f )
{
2012-09-11 21:11:34 +00:00
if ( !m_physics->GetLand() ) return ERR_CONTINUE;
m_physics->SetMotorSpeedY(0.0f);
}
if ( m_bTake )
{
m_angle = Math::RotateAngle(m_goalObject.x-pos.x, pos.z-m_goalObject.z);
m_phase = TGP_TURN;
}
else
{
return ERR_STOP;
}
}
if ( m_phase == TGP_TURN ) // turns to the object?
{
angle = Math::NormAngle(m_object->GetRotationY());
limit = 0.02f;
if ( m_bApprox ) limit = 0.10f;
if ( fabs(angle-m_angle) < limit )
{
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
if ( m_bmFinalMove == 0.0f ) return ERR_STOP;
m_bmFinalPos = m_object->GetPosition();
2012-09-11 21:11:34 +00:00
m_bmFinalDist = m_physics->GetLinLength(m_bmFinalMove);
m_bmTimeLimit = m_physics->GetLinTimeLength(fabs(m_bmFinalMove))*1.5f;
if ( m_bmTimeLimit < 0.5f ) m_bmTimeLimit = 0.5f;
m_phase = TGP_MOVE;
}
}
if ( m_phase == TGP_CRWAIT ) // waits after collision?
{
if ( m_crashMode == TGC_HALT )
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
m_error = ERR_UNKNOWN;
return m_error;
}
if ( m_time >= 1.0f )
{
if ( m_crashMode == TGC_RIGHTLEFT ||
m_crashMode == TGC_RIGHT ) angle = Math::PI/2.0f; // 90 deegres to the right
else angle = -Math::PI/2.0f; // 90 deegres to the left
m_angle = Math::NormAngle(m_object->GetRotationY()+angle);
m_phase = TGP_CRTURN;
//? m_phase = TGP_ADVANCE;
}
}
if ( m_phase == TGP_CRTURN ) // turns after collision?
{
angle = Math::NormAngle(m_object->GetRotationY());
limit = 0.1f;
if ( fabs(angle-m_angle) < limit )
{
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
m_pos = pos;
m_phase = TGP_CRADVANCE;
}
}
if ( m_phase == TGP_CRADVANCE ) // advance after collision?
{
if ( glm::distance(pos, m_pos) >= 5.0f )
{
m_phase = TGP_ADVANCE;
}
}
if ( m_phase == TGP_CLWAIT ) // waits after collision?
{
if ( m_time >= 1.0f )
{
if ( m_crashMode == TGC_RIGHTLEFT ) angle = -Math::PI;
if ( m_crashMode == TGC_LEFTRIGHT ) angle = Math::PI;
if ( m_crashMode == TGC_RIGHT ) angle = Math::PI/2.0f;
if ( m_crashMode == TGC_LEFT ) angle = -Math::PI/2.0f;
m_angle = Math::NormAngle(m_object->GetRotationY()+angle);
m_phase = TGP_CLTURN;
}
}
if ( m_phase == TGP_CLTURN ) // turns after collision?
{
angle = Math::NormAngle(m_object->GetRotationY());
limit = 0.1f;
if ( fabs(angle-m_angle) < limit )
{
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
m_pos = pos;
m_phase = TGP_CLADVANCE;
}
}
if ( m_phase == TGP_CLADVANCE ) // advance after collision?
{
if ( glm::distance(pos, m_pos) >= 10.0f )
{
m_phase = TGP_ADVANCE;
m_try ++;
}
}
if ( m_phase == TGP_MOVE ) // final advance?
{
if ( m_bmTimeLimit <= 0.0f )
{
m_physics->SetMotorSpeedX(0.0f); // stops
Abort();
return ERR_STOP;
}
dist = glm::distance(m_bmFinalPos, m_object->GetPosition());
if ( dist < m_bmFinalDist ) return ERR_CONTINUE;
m_physics->SetMotorSpeedX(0.0f); // stops the advance
return ERR_STOP;
}
return ERR_CONTINUE;
}
// Tries the object is the target position.
CObject* CTaskGoto::SearchTarget(glm::vec3 pos, float margin)
{
//return CObjectManager::GetInstancePointer()->FindNearest(nullptr, pos, OBJECT_NULL, margin/g_unit);
/*
* TODO: FindNearest() can't be used here. Reverted to code from before 4fef3af9ef1fbe61a0c4c3f5c176f56257428efb
*
* The reason is that in the case of multiple objects being placed at the same position,
* this function needs to return the last one in order of creation. FindNearest() does the opposite.
*
* Whoever designed goto() so that it has to guess which object the user wants based only on position - thanks
* for making it so confusing :/
*
* This works well enough assuming that portable objects from the level file are always created after the objects
* they are placed on, for example BlackBox is created after GoalArea, TitaniumOre is created after Converter etc.
* This is probably required anyway to prevent them from sinking into the ground.
*
* User-created objects don't make a difference because there is no way you can place them precisely enough
* for floats to compare with ==.
*
* See issue #732
*/
2016-12-27 14:54:52 +00:00
CObject* pBest = nullptr;
float min = 1000000.0f;
for ( CObject* pObj : CObjectManager::GetInstancePointer()->GetAllObjects() )
{
if ( !pObj->GetActive() ) continue;
if ( IsObjectBeingTransported(pObj) ) continue; // object transtorted?
glm::vec3 oPos = pObj->GetPosition();
2016-12-27 14:54:52 +00:00
float dist = Math::DistanceProjected(pos, oPos);
if ( dist <= margin && dist <= min )
{
min = dist;
pBest = pObj;
}
}
return pBest;
}
// Adjusts the target as a function of the object.
// Returns true if it is cargo laying on the ground, which can be approached from any site.
bool CTaskGoto::AdjustTarget(CObject* pObj, glm::vec3 &pos, float &distance)
{
ObjectType type;
Math::Matrix* mat;
glm::vec3 goal;
float dist, suppl;
2012-09-11 21:11:34 +00:00
type = m_object->GetType();
if ( type == OBJECT_BEE ||
type == OBJECT_WORM )
{
pos = pObj->GetPosition();
return false; // single approach
}
2012-09-11 21:11:34 +00:00
type = pObj->GetType();
2015-08-13 17:53:03 +00:00
if ( pObj->Implements(ObjectInterfaceType::Transportable) ||
type == OBJECT_RUINmobilew1 || // TODO: CRecoverableObject?
type == OBJECT_RUINmobilew2 ||
type == OBJECT_RUINmobilet1 ||
type == OBJECT_RUINmobilet2 ||
type == OBJECT_RUINmobiler1 ||
type == OBJECT_RUINmobiler2 )
{
pos = m_object->GetPosition();
goal = pObj->GetPosition();
dist = glm::distance(goal, pos);
pos = (pos-goal)*(TAKE_DIST+distance)/dist + goal;
return true; // approach from all sites
}
if ( type == OBJECT_BASE )
{
pos = m_object->GetPosition();
goal = pObj->GetPosition();
dist = glm::distance(goal, pos);
pos = (pos-goal)*(TAKE_DIST+distance)/dist + goal;
return true; // approach from all sites
}
if ( type == OBJECT_MOBILEfa ||
type == OBJECT_MOBILEta ||
type == OBJECT_MOBILEwa ||
type == OBJECT_MOBILEia ||
2017-11-16 17:43:45 +00:00
type == OBJECT_MOBILEfb ||
type == OBJECT_MOBILEtb ||
type == OBJECT_MOBILEwb ||
type == OBJECT_MOBILEib ||
type == OBJECT_MOBILEfs ||
type == OBJECT_MOBILEts ||
type == OBJECT_MOBILEws ||
type == OBJECT_MOBILEis ||
type == OBJECT_MOBILEfc ||
type == OBJECT_MOBILEtc ||
type == OBJECT_MOBILEwc ||
type == OBJECT_MOBILEic ||
type == OBJECT_MOBILEfi ||
type == OBJECT_MOBILEti ||
type == OBJECT_MOBILEwi ||
type == OBJECT_MOBILEii ||
type == OBJECT_MOBILErt ||
type == OBJECT_MOBILErc ||
type == OBJECT_MOBILErr ||
type == OBJECT_MOBILErs ||
type == OBJECT_MOBILEsa ||
type == OBJECT_MOBILEtg ||
type == OBJECT_MOBILEft ||
type == OBJECT_MOBILEtt ||
type == OBJECT_MOBILEwt ||
type == OBJECT_MOBILEit ||
2018-12-23 06:04:06 +00:00
type == OBJECT_MOBILErp ||
type == OBJECT_MOBILEst ||
type == OBJECT_MOBILEdr )
{
2015-08-17 19:23:07 +00:00
assert(pObj->Implements(ObjectInterfaceType::Powered));
pos = dynamic_cast<CPoweredObject&>(*pObj).GetPowerPosition();
pos.x -= TAKE_DIST+TAKE_DIST_OTHER+distance;
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos = Transform(*mat, pos);
return false; // single approach
}
if ( GetHotPoint(pObj, goal, true, distance, suppl) )
{
pos = goal;
distance += suppl;
return false; // single approach
}
pos = pObj->GetPosition();
distance = 0.0f;
return false; // single approach
}
// If you are on an object produced by a building (ore produced by derrick),
// changes the position by report the building.
bool CTaskGoto::AdjustBuilding(glm::vec3 &pos, float margin, float &distance)
{
for (CObject* obj : CObjectManager::GetInstancePointer()->GetAllObjects())
{
if ( !obj->GetActive() ) continue;
2015-07-10 17:03:27 +00:00
if (IsObjectBeingTransported(obj)) continue;
glm::vec3 oPos;
float suppl = 0.0f;
if ( !GetHotPoint(obj, oPos, false, 0.0f, suppl) ) continue;
float dist = Math::DistanceProjected(pos, oPos);
if ( dist <= margin )
{
GetHotPoint(obj, pos, true, distance, suppl);
distance += suppl;
return true;
}
}
return false;
}
// Returns the item or product or pose is something on a building.
bool CTaskGoto::GetHotPoint(CObject *pObj, glm::vec3 &pos,
bool bTake, float distance, float &suppl)
{
ObjectType type;
Math::Matrix* mat;
pos = glm::vec3(0.0f, 0.0f, 0.0f);
suppl = 0.0f;
2012-09-11 21:11:34 +00:00
type = pObj->GetType();
if ( type == OBJECT_DERRICK )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 8.0f;
if ( bTake && distance != 0.0f ) suppl = 4.0f;
if ( bTake ) pos.x += TAKE_DIST+distance+suppl;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_CONVERT )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 0.0f;
if ( bTake && distance != 0.0f ) suppl = 4.0f;
if ( bTake ) pos.x += TAKE_DIST+distance+suppl;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_RESEARCH )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 10.0f;
if ( bTake && distance != 0.0f ) suppl = 2.5f;
if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance+suppl;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_ENERGY )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 6.0f;
if ( bTake && distance != 0.0f ) suppl = 6.0f;
if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_TOWER )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 5.0f;
if ( bTake && distance != 0.0f ) suppl = 4.0f;
if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance+suppl;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_LABO )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 6.0f;
if ( bTake && distance != 0.0f ) suppl = 6.0f;
if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_NUCLEAR )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 22.0f;
if ( bTake && distance != 0.0f ) suppl = 4.0f;
if ( bTake ) pos.x += TAKE_DIST+TAKE_DIST_OTHER+distance+suppl;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_FACTORY )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 4.0f;
if ( bTake && distance != 0.0f ) suppl = 6.0f;
if ( bTake ) pos.x += TAKE_DIST+distance+suppl;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_STATION )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 4.0f;
if ( bTake && distance != 0.0f ) suppl = 4.0f;
if ( bTake ) pos.x += distance;
pos = Transform(*mat, pos);
return true;
}
if ( type == OBJECT_REPAIR )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
pos.x += 4.0f;
if ( bTake && distance != 0.0f ) suppl = 4.0f;
if ( bTake ) pos.x += distance;
pos = Transform(*mat, pos);
return true;
}
2015-08-12 17:09:35 +00:00
if ( type == OBJECT_PARA && m_object->Implements(ObjectInterfaceType::Flying) )
{
2012-09-11 21:11:34 +00:00
mat = pObj->GetWorldMatrix(0);
if ( bTake && distance != 0.0f ) suppl = 20.0f;
if ( bTake ) pos.x += distance+suppl;
pos = Transform(*mat, pos);
return true;
}
suppl = 0.0f;
return false;
}
// Seeks an object too close that he must flee.
bool CTaskGoto::LeakSearch(glm::vec3 &pos, float &delay)
{
if (!m_physics->GetLand()) return false; // in flight?
Math::Sphere crashSphere = m_object->GetFirstCrashSphere().sphere;
float min = 100000.0f;
CObject* obstacle = nullptr;
Math::Sphere obstacleCrashSphere;
for (CObject* obj : CObjectManager::GetInstancePointer()->GetAllObjects())
{
if ( obj == m_object ) continue;
if ( !obj->GetDetectable() ) continue;
2015-07-10 17:03:27 +00:00
if (IsObjectBeingTransported(obj)) continue;
for (const auto& objCrashSphere : obj->GetAllCrashSpheres())
{
float dist = Math::DistanceProjected(crashSphere.pos, objCrashSphere.sphere.pos);
if (dist < min)
{
min = dist;
obstacleCrashSphere = objCrashSphere.sphere;
obstacle = obj;
}
}
}
if (min > crashSphere.radius + obstacleCrashSphere.radius + 4.0f) return false;
m_bLeakRecede = false;
float dist = 4.0f;
float dir = 1.0f;
if (obstacle->GetType() == OBJECT_FACTORY)
{
dist = 16.0f;
dir = -1.0f;
m_bLeakRecede = true; // simply recoils
}
pos = obstacleCrashSphere.pos;
2012-09-11 21:11:34 +00:00
delay = m_physics->GetLinTimeLength(dist, dir);
return true;
}
// Calculates the force of repulsion due to obstacles.
// The vector length rendered is between 0 and 1.
void CTaskGoto::ComputeRepulse(glm::vec2&dir)
{
ObjectType iType, oType;
glm::vec2 repulse;
float gDist, add, addi, fac, dist;
bool bAlien;
dir.x = 0.0f;
dir.y = 0.0f;
// The worm goes everywhere and through everything!
2012-09-11 21:11:34 +00:00
iType = m_object->GetType();
2013-04-29 15:26:32 +00:00
if ( iType == OBJECT_WORM || iType == OBJECT_CONTROLLER ) return;
auto firstCrashSphere = m_object->GetFirstCrashSphere();
glm::vec3 iPos = firstCrashSphere.sphere.pos;
float iRadius = firstCrashSphere.sphere.radius;
gDist = glm::distance(iPos, m_goal);
2012-09-11 21:11:34 +00:00
add = m_physics->GetLinStopLength()*1.1f; // braking distance
fac = 2.0f;
if ( iType == OBJECT_MOBILEwa ||
2017-11-16 17:43:45 +00:00
iType == OBJECT_MOBILEwb ||
iType == OBJECT_MOBILEwc ||
iType == OBJECT_MOBILEwi ||
iType == OBJECT_MOBILEws ||
iType == OBJECT_MOBILEwt ) // wheels?
{
add = 5.0f;
fac = 1.5f;
}
if ( iType == OBJECT_MOBILEta ||
2017-11-16 17:43:45 +00:00
iType == OBJECT_MOBILEtb ||
iType == OBJECT_MOBILEtc ||
iType == OBJECT_MOBILEti ||
iType == OBJECT_MOBILEts ||
iType == OBJECT_MOBILEtt ||
iType == OBJECT_MOBILEdr ) // caterpillars?
{
add = 4.0f;
fac = 1.5f;
}
if ( iType == OBJECT_MOBILEfa ||
2017-11-16 17:43:45 +00:00
iType == OBJECT_MOBILEfb ||
iType == OBJECT_MOBILEfc ||
iType == OBJECT_MOBILEfi ||
iType == OBJECT_MOBILEfs ||
iType == OBJECT_MOBILEft ) // flying?
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetLand() )
{
add = 5.0f;
fac = 1.5f;
}
else
{
add = 10.0f;
fac = 1.5f;
}
}
if ( iType == OBJECT_MOBILEia ||
2017-11-16 17:43:45 +00:00
iType == OBJECT_MOBILEib ||
iType == OBJECT_MOBILEic ||
iType == OBJECT_MOBILEii ||
iType == OBJECT_MOBILEis ||
iType == OBJECT_MOBILEit ) // legs?
{
add = 4.0f;
fac = 1.5f;
}
if ( iType == OBJECT_BEE ) // wasp?
{
2012-09-11 21:11:34 +00:00
if ( m_physics->GetLand() )
{
add = 3.0f;
fac = 1.5f;
}
else
{
add = 5.0f;
fac = 1.5f;
}
}
bAlien = false;
if ( iType == OBJECT_MOTHER ||
iType == OBJECT_ANT ||
iType == OBJECT_SPIDER ||
iType == OBJECT_BEE ||
iType == OBJECT_WORM )
{
bAlien = true;
}
for (CObject* pObj : CObjectManager::GetInstancePointer()->GetAllObjects())
{
if ( pObj == m_object ) continue;
2015-07-10 17:03:27 +00:00
if (IsObjectBeingTransported(pObj)) continue;
2012-09-11 21:11:34 +00:00
oType = pObj->GetType();
if ( oType == OBJECT_WORM ) continue;
if ( bAlien )
{
2015-08-13 17:53:03 +00:00
if ( pObj->Implements(ObjectInterfaceType::Transportable) ||
oType == OBJECT_BOMB ||
(oType >= OBJECT_PLANT0 &&
oType <= OBJECT_PLANT19 ) ||
2014-01-11 22:42:45 +00:00
(oType >= OBJECT_MUSHROOM1 &&
oType <= OBJECT_MUSHROOM2 ) ) continue;
}
addi = add;
if ( iType == OBJECT_BEE &&
oType == OBJECT_BEE )
{
addi = 2.0f; // between wasps, do not annoy too much
}
2012-06-26 21:01:17 +00:00
for (const auto& crashSphere : pObj->GetAllCrashSpheres())
{
glm::vec3 oPos = crashSphere.sphere.pos;
float oRadius = crashSphere.sphere.radius;
if ( oPos.y-oRadius > iPos.y+iRadius ) continue;
if ( oPos.y+oRadius < iPos.y-iRadius ) continue;
dist = glm::distance(oPos, m_goal);
if ( dist <= 1.0f ) continue; // on purpose?
oRadius += iRadius+addi;
dist = Math::DistanceProjected(oPos, iPos);
if ( dist > gDist ) continue; // beyond the goal?
if ( dist <= oRadius )
{
repulse.x = iPos.x-oPos.x;
repulse.y = iPos.z-oPos.z;
dist = powf(dist/oRadius, fac);
dist = 0.2f-0.2f*dist;
repulse.x *= dist;
repulse.y *= dist;
dir.x += repulse.x;
dir.y += repulse.y;
}
}
}
}
// Calculates the force of vertical repulsion according to barriers.
// The vector length is madebetween -1 and 1.
void CTaskGoto::ComputeFlyingRepulse(float &dir)
{
auto firstCrashSphere = m_object->GetFirstCrashSphere();
glm::vec3 iPos = firstCrashSphere.sphere.pos;
float iRadius = firstCrashSphere.sphere.radius;
float add = 0.0f;
float fac = 1.5f;
dir = 0.0f;
for (CObject* pObj : CObjectManager::GetInstancePointer()->GetAllObjects())
{
if ( pObj == m_object ) continue;
2015-07-10 17:03:27 +00:00
if (IsObjectBeingTransported(pObj)) continue;
ObjectType oType = pObj->GetType();
if ( oType == OBJECT_WORM ) continue;
for (const auto& crashSphere : pObj->GetAllCrashSpheres())
{
glm::vec3 oPos = crashSphere.sphere.pos;
float oRadius = crashSphere.sphere.radius;
oRadius += iRadius+add;
float dist = Math::DistanceProjected(oPos, iPos);
if ( dist <= oRadius )
{
float repulse = iPos.y-oPos.y;
dist = powf(dist/oRadius, fac);
dist = 0.2f-0.2f*dist;
repulse *= dist;
dir += repulse;
}
}
}
if ( dir < -1.0f ) dir = -1.0f;
if ( dir > 1.0f ) dir = 1.0f;
}
// Among all of the following, seek if there is one allowing to go directly to the crow flies.
// If yes, skip all the unnecessary intermediate points.
int CTaskGoto::BeamShortcut()
{
int i;
for ( i=m_bmTotal ; i>=m_bmIndex+2 ; i-- ) // tries from the last
{
if ( BitmapTestLine(m_bmPoints[m_bmIndex], m_bmPoints[i], 0.0f, false) )
{
return i; // bingo, found
}
}
return m_bmIndex+1; // simply goes to the next
}
// That's the big start.
void CTaskGoto::BeamStart()
{
glm::vec3 min, max;
BitmapOpen();
BitmapObject();
min = m_object->GetPosition();
max = m_goal;
if ( min.x > max.x ) Math::Swap(min.x, max.x);
if ( min.z > max.z ) Math::Swap(min.z, max.z);
min.x -= 10.0f*BM_DIM_STEP;
min.z -= 10.0f*BM_DIM_STEP;
max.x += 10.0f*BM_DIM_STEP;
max.z += 10.0f*BM_DIM_STEP;
BitmapTerrain(min, max);
if ( LeakSearch(m_leakPos, m_leakDelay) )
{
m_phase = TGP_BEAMLEAK; // must first leak
m_leakTime = 0.0f;
}
else
{
m_physics->SetMotorSpeedX(0.0f); // stops the advance
m_physics->SetMotorSpeedZ(0.0f); // stops the rotation
BeamInit();
m_phase = TGP_BEAMSEARCH; // will seek the path
}
}
// Initialization before the first BeamSearch.
void CTaskGoto::BeamInit()
{
int i;
for ( i=0 ; i<MAXPOINTS ; i++ )
{
m_bmIter[i] = -1;
}
m_bmStep = 0;
}
// Calculates points and passes to go from start to goal.
// Returns:
// ERR_OK if it's good
// ERR_GOTO_IMPOSSIBLE if impossible
// ERR_GOTO_ITER if aborts because too many recursions
// ERR_CONTINUE if not done yet
// goalRadius: distance at which we must approach the goal
Error CTaskGoto::BeamSearch(const glm::vec3 &start, const glm::vec3 &goal,
float goalRadius)
{
float step, len;
int nbIter;
m_bmStep ++;
len = Math::DistanceProjected(start, goal);
step = len/BEAM_ACCURACY;
if ( step < BM_DIM_STEP*2.1f ) step = BM_DIM_STEP*2.1f;
if ( step > 20.0f ) step = 20.0f;
nbIter = 200; // in order not to lower the framerate
m_bmIterCounter = 0;
return BeamExplore(start, start, goal, goalRadius, 165.0f*Math::PI/180.0f, 22, step, 0, nbIter);
}
// prevPos: previous position
// curPos: current position
// goalPos: position that seeks to achieve
// angle: angle to the goal we explores
// nbDiv: number of subdivisions being done with angle
// step length of a step
// i number of recursions made
// nbIter maximum number of iterations you have the right to make before temporarily interrupt
Error CTaskGoto::BeamExplore(const glm::vec3 &prevPos, const glm::vec3 &curPos,
const glm::vec3 &goalPos, float goalRadius,
float angle, int nbDiv, float step,
int i, int nbIter)
{
glm::vec3 newPos;
Error ret;
int iDiv, iClear, iLar;
2012-06-26 21:01:17 +00:00
iLar = 0;
if ( i >= MAXPOINTS ) return ERR_GOTO_ITER; // too many recursions
2012-06-26 21:01:17 +00:00
2016-03-28 18:25:07 +00:00
m_bmTotal = i;
if ( m_bmIter[i] == -1 )
{
m_bmIter[i] = 0;
if ( i == 0 )
{
m_bmPoints[i] = curPos;
}
else
{
if ( !BitmapTestLine(prevPos, curPos, angle/nbDiv, true) ) return ERR_GOTO_IMPOSSIBLE;
m_bmPoints[i] = curPos;
if ( Math::DistanceProjected(curPos, goalPos)-goalRadius <= step )
{
if ( goalRadius == 0.0f )
{
newPos = goalPos;
}
else
{
newPos = BeamPoint(curPos, goalPos, 0, Math::DistanceProjected(curPos, goalPos)-goalRadius);
}
if ( BitmapTestLine(curPos, newPos, angle/nbDiv, false) )
{
m_bmPoints[i+1] = newPos;
m_bmTotal = i+1;
return ERR_OK;
}
}
}
}
2012-06-26 21:01:17 +00:00
if ( iLar >= m_bmIter[i] )
{
newPos = BeamPoint(curPos, goalPos, 0, step);
ret = BeamExplore(curPos, newPos, goalPos, goalRadius, angle, nbDiv, step, i+1, nbIter);
if ( ret != ERR_GOTO_IMPOSSIBLE ) return ret;
m_bmIter[i] = iLar+1;
for ( iClear=i+1 ; iClear<=MAXPOINTS ; iClear++ ) m_bmIter[iClear] = -1;
m_bmIterCounter ++;
if ( m_bmIterCounter >= nbIter ) return ERR_CONTINUE;
}
iLar ++;
for ( iDiv=1 ; iDiv<=nbDiv ; iDiv++ )
{
if ( iLar >= m_bmIter[i] )
{
newPos = BeamPoint(curPos, goalPos, angle*iDiv/nbDiv, step);
ret = BeamExplore(curPos, newPos, goalPos, goalRadius, angle, nbDiv, step, i+1, nbIter);
if ( ret != ERR_GOTO_IMPOSSIBLE ) return ret;
m_bmIter[i] = iLar+1;
for ( iClear=i+1 ; iClear<=MAXPOINTS ; iClear++ ) m_bmIter[iClear] = -1;
m_bmIterCounter ++;
if ( m_bmIterCounter >= nbIter ) return ERR_CONTINUE;
}
iLar ++;
if ( iLar >= m_bmIter[i] )
{
newPos = BeamPoint(curPos, goalPos, -angle*iDiv/nbDiv, step);
ret = BeamExplore(curPos, newPos, goalPos, goalRadius, angle, nbDiv, step, i+1, nbIter);
if ( ret != ERR_GOTO_IMPOSSIBLE ) return ret;
m_bmIter[i] = iLar+1;
for ( iClear=i+1 ; iClear<=MAXPOINTS ; iClear++ ) m_bmIter[iClear] = -1;
m_bmIterCounter ++;
if ( m_bmIterCounter >= nbIter ) return ERR_CONTINUE;
}
iLar ++;
}
return ERR_GOTO_IMPOSSIBLE;
}
// Is a right "start-goal". Calculates the point located at the distance "step"
// from the point "start" and an angle "angle" with the right.
glm::vec3 CTaskGoto::BeamPoint(const glm::vec3 &startPoint,
const glm::vec3 &goalPoint,
float angle, float step)
{
glm::vec3 resPoint;
float goalAngle;
goalAngle = Math::RotateAngle(goalPoint.x-startPoint.x, goalPoint.z-startPoint.z);
resPoint.x = startPoint.x + cosf(goalAngle+angle)*step;
resPoint.z = startPoint.z + sinf(goalAngle+angle)*step;
resPoint.y = 0.0f;
return resPoint;
}
// Tests if a path along a straight line is possible.
bool CTaskGoto::BitmapTestLine(const glm::vec3 &start, const glm::vec3 &goal,
float stepAngle, bool bSecond)
{
glm::vec3 pos, inc;
float dist, step;
float distNoB2;
int i, max, x, y;
2015-08-17 20:40:52 +00:00
if ( m_bmArray == nullptr ) return true;
dist = Math::DistanceProjected(start, goal);
if ( dist == 0.0f ) return true;
step = BM_DIM_STEP*0.5f;
inc.x = (goal.x-start.x)*step/dist;
inc.z = (goal.z-start.z)*step/dist;
pos = start;
if ( bSecond )
{
2012-09-11 21:11:34 +00:00
x = static_cast<int>((pos.x+1600.0f)/BM_DIM_STEP);
y = static_cast<int>((pos.z+1600.0f)/BM_DIM_STEP);
BitmapSetDot(1, x, y); // puts the flag as the starting point
}
2012-09-11 21:11:34 +00:00
max = static_cast<int>(dist/step);
if ( max == 0 ) max = 1;
distNoB2 = BM_DIM_STEP*sqrtf(2.0f)/sinf(stepAngle);
for ( i=0 ; i<max ; i++ )
{
if ( i == max-1 )
{
pos = goal; // tests the point of arrival
}
else
{
pos.x += inc.x;
pos.z += inc.z;
}
2012-09-11 21:11:34 +00:00
x = static_cast<int>((pos.x+1600.0f)/BM_DIM_STEP);
y = static_cast<int>((pos.z+1600.0f)/BM_DIM_STEP);
if ( bSecond )
{
if ( i > 2 && BitmapTestDot(1, x, y) ) return false;
if ( step*(i+1) > distNoB2 && i < max-2 )
{
BitmapSetDot(1, x, y);
}
}
if ( BitmapTestDot(0, x, y) ) return false;
}
return true;
}
// Adds the objects in the bitmap.
void CTaskGoto::BitmapObject()
{
auto firstCrashSphere = m_object->GetFirstCrashSphere();
float iRadius = firstCrashSphere.sphere.radius;
for (CObject* pObj : CObjectManager::GetInstancePointer()->GetAllObjects())
{
ObjectType type = pObj->GetType();
if ( pObj == m_object ) continue;
2015-06-29 21:05:31 +00:00
if ( pObj == m_bmCargoObject ) continue;
2015-07-10 17:03:27 +00:00
if (IsObjectBeingTransported(pObj)) continue;
2012-06-26 21:01:17 +00:00
float h = m_terrain->GetFloorLevel(pObj->GetPosition(), false);
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude > 0.0f )
{
h += m_altitude;
}
for (const auto& crashSphere : pObj->GetAllCrashSpheres())
{
glm::vec3 oPos = crashSphere.sphere.pos;
float oRadius = crashSphere.sphere.radius;
2015-08-12 17:09:35 +00:00
if ( m_object->Implements(ObjectInterfaceType::Flying) && m_altitude > 0.0f ) // flying?
{
if ( oPos.y-oRadius > h+8.0f ||
oPos.y+oRadius < h-8.0f ) continue;
}
else // crawling?
{
if ( oPos.y-oRadius > h+8.0f ) continue;
}
if ( type == OBJECT_PARA ) oRadius -= 2.0f;
BitmapSetCircle(oPos, oRadius+iRadius+SAFETY_MARGIN);
}
}
}
// Adds a section of land in the bitmap.
void CTaskGoto::BitmapTerrain(const glm::vec3 &min, const glm::vec3 &max)
{
int minx, miny, maxx, maxy;
2012-09-11 21:11:34 +00:00
minx = static_cast<int>((min.x+1600.0f)/BM_DIM_STEP);
miny = static_cast<int>((min.z+1600.0f)/BM_DIM_STEP);
maxx = static_cast<int>((max.x+1600.0f)/BM_DIM_STEP);
maxy = static_cast<int>((max.z+1600.0f)/BM_DIM_STEP);
BitmapTerrain(minx, miny, maxx, maxy);
}
// Adds a section of land in the bitmap.
void CTaskGoto::BitmapTerrain(int minx, int miny, int maxx, int maxy)
{
ObjectType type;
glm::vec3 p;
float aLimit, angle, h;
int x, y;
bool bAcceptWater, bFly;
if ( minx > maxx ) Math::Swap(minx, maxx);
if ( miny > maxy ) Math::Swap(miny, maxy);
if ( minx < 0 ) minx = 0;
if ( miny < 0 ) miny = 0;
if ( maxx > m_bmSize-1 ) maxx = m_bmSize-1;
if ( maxy > m_bmSize-1 ) maxy = m_bmSize-1;
if ( minx > m_bmMinX ) minx = m_bmMinX;
if ( miny > m_bmMinY ) miny = m_bmMinY;
if ( maxx < m_bmMaxX ) maxx = m_bmMaxX;
if ( maxy < m_bmMaxY ) maxy = m_bmMaxY;
if ( minx >= m_bmMinX && maxx <= m_bmMaxX &&
miny >= m_bmMinY && maxy <= m_bmMaxY ) return;
aLimit = 20.0f*Math::PI/180.0f;
bAcceptWater = false;
bFly = false;
2012-09-11 21:11:34 +00:00
type = m_object->GetType();
if ( type == OBJECT_MOBILEwa ||
2017-11-16 17:43:45 +00:00
type == OBJECT_MOBILEwb ||
type == OBJECT_MOBILEwc ||
type == OBJECT_MOBILEws ||
type == OBJECT_MOBILEwi ||
type == OBJECT_MOBILEwt ||
type == OBJECT_MOBILEtg ) // wheels?
{
aLimit = 20.0f*Math::PI/180.0f;
}
if ( type == OBJECT_MOBILEta ||
2017-11-16 17:43:45 +00:00
type == OBJECT_MOBILEtb ||
type == OBJECT_MOBILEtc ||
type == OBJECT_MOBILEti ||
type == OBJECT_MOBILEts ) // caterpillars?
{
aLimit = 35.0f*Math::PI/180.0f;
}
if ( type == OBJECT_MOBILErt ||
type == OBJECT_MOBILErc ||
type == OBJECT_MOBILErr ||
2018-12-23 06:04:06 +00:00
type == OBJECT_MOBILErs ||
type == OBJECT_MOBILErp ) // large caterpillars?
{
aLimit = 35.0f*Math::PI/180.0f;
}
2018-12-23 06:04:06 +00:00
if ( type == OBJECT_MOBILEsa ||
type == OBJECT_MOBILEst ) // submarine caterpillars?
{
aLimit = 35.0f*Math::PI/180.0f;
bAcceptWater = true;
}
if ( type == OBJECT_MOBILEdr ) // designer caterpillars?
{
aLimit = 35.0f*Math::PI/180.0f;
}
if ( type == OBJECT_MOBILEfa ||
2017-11-16 17:43:45 +00:00
type == OBJECT_MOBILEfb ||
type == OBJECT_MOBILEfc ||
type == OBJECT_MOBILEfs ||
type == OBJECT_MOBILEfi ||
type == OBJECT_MOBILEft ) // flying?
{
aLimit = 15.0f*Math::PI/180.0f;
bFly = true;
}
if ( type == OBJECT_MOBILEia ||
2017-11-16 17:43:45 +00:00
type == OBJECT_MOBILEib ||
type == OBJECT_MOBILEic ||
type == OBJECT_MOBILEis ||
type == OBJECT_MOBILEii ) // insect legs?
{
aLimit = 60.0f*Math::PI/180.0f;
}
2012-06-26 21:01:17 +00:00
for ( y=miny ; y<=maxy ; y++ )
{
for ( x=minx ; x<=maxx ; x++ )
{
if ( x >= m_bmMinX && x <= m_bmMaxX &&
y >= m_bmMinY && y <= m_bmMaxY ) continue;
p.x = x*BM_DIM_STEP-1600.0f;
p.z = y*BM_DIM_STEP-1600.0f;
if ( bFly ) // flying robot?
{
2012-09-11 21:11:34 +00:00
h = m_terrain->GetFloorLevel(p, true);
if ( h >= m_terrain->GetFlyingMaxHeight()-5.0f )
{
BitmapSetDot(0, x, y);
}
continue;
}
if ( !bAcceptWater ) // not going underwater?
{
2012-09-11 21:11:34 +00:00
h = m_terrain->GetFloorLevel(p, true);
if ( h < m_water->GetLevel()-2.0f ) // under water (*)?
{
//? BitmapSetDot(0, x, y);
BitmapSetCircle(p, BM_DIM_STEP*1.0f);
continue;
}
}
2012-09-11 21:11:34 +00:00
angle = m_terrain->GetFineSlope(p);
if ( angle > aLimit )
{
BitmapSetDot(0, x, y);
}
}
}
m_bmMinX = minx;
m_bmMinY = miny;
m_bmMaxX = maxx;
m_bmMaxY = maxy; // expanded rectangular area
}
// (*) Accepts that a robot is 50cm under water, for example Tropica 3!
// Opens an empty bitmap.
bool CTaskGoto::BitmapOpen()
{
BitmapClose();
2012-09-11 21:11:34 +00:00
m_bmSize = static_cast<int>(3200.0f/BM_DIM_STEP);
m_bmArray = MakeUniqueArray<unsigned char>(m_bmSize*m_bmSize/8*2);
2016-03-28 19:42:25 +00:00
m_bmChanged = true;
m_bmOffset = m_bmSize/2;
m_bmLine = m_bmSize/8;
m_bmMinX = m_bmSize; // non-existent rectangular area
m_bmMinY = m_bmSize;
m_bmMaxX = 0;
m_bmMaxY = 0;
return true;
}
// Closes the bitmap.
bool CTaskGoto::BitmapClose()
{
m_bmArray.reset();
2016-03-28 19:42:25 +00:00
m_bmChanged = true;
return true;
}
// Puts a circle in the bitmap.
void CTaskGoto::BitmapSetCircle(const glm::vec3 &pos, float radius)
{
float d, r;
int cx, cy, ix, iy;
2012-09-11 21:11:34 +00:00
cx = static_cast<int>((pos.x+1600.0f)/BM_DIM_STEP);
cy = static_cast<int>((pos.z+1600.0f)/BM_DIM_STEP);
r = radius/BM_DIM_STEP;
2012-09-11 21:11:34 +00:00
for ( iy=cy-static_cast<int>(r) ; iy<=cy+static_cast<int>(r) ; iy++ )
{
2012-09-11 21:11:34 +00:00
for ( ix=cx-static_cast<int>(r) ; ix<=cx+static_cast<int>(r) ; ix++ )
{
d = glm::length(glm::vec2(static_cast<float>(ix-cx), static_cast<float>(iy-cy)));
if ( d > r ) continue;
BitmapSetDot(0, ix, iy);
}
}
}
// Removes a circle in the bitmap.
2012-09-11 21:11:34 +00:00
//TODO this method is almost same as above one
void CTaskGoto::BitmapClearCircle(const glm::vec3 &pos, float radius)
{
float d, r;
int cx, cy, ix, iy;
2012-09-11 21:11:34 +00:00
cx = static_cast<int>((pos.x+1600.0f)/BM_DIM_STEP);
cy = static_cast<int>((pos.z+1600.0f)/BM_DIM_STEP);
r = radius/BM_DIM_STEP;
2012-09-11 21:11:34 +00:00
for ( iy=cy-static_cast<int>(r) ; iy<=cy+static_cast<int>(r) ; iy++ )
{
2012-09-11 21:11:34 +00:00
for ( ix=cx-static_cast<int>(r) ; ix<=cx+static_cast<int>(r) ; ix++ )
{
d = glm::length(glm::vec2(static_cast<float>(ix-cx), static_cast<float>(iy-cy)));
if ( d > r ) continue;
BitmapClearDot(0, ix, iy);
}
}
}
// Makes a point in the bitmap.
// x:y: 0..m_bmSize-1
void CTaskGoto::BitmapSetDot(int rank, int x, int y)
{
if ( x < 0 || x >= m_bmSize ||
y < 0 || y >= m_bmSize ) return;
m_bmArray[rank*m_bmLine*m_bmSize + m_bmLine*y + x/8] |= (1<<x%8);
2016-03-28 19:42:25 +00:00
m_bmChanged = true;
}
// Removes a point in the bitmap.
// x:y: 0..m_bmSize-1
void CTaskGoto::BitmapClearDot(int rank, int x, int y)
{
if ( x < 0 || x >= m_bmSize ||
y < 0 || y >= m_bmSize ) return;
m_bmArray[rank*m_bmLine*m_bmSize + m_bmLine*y + x/8] &= ~(1<<x%8);
2016-03-28 19:42:25 +00:00
m_bmChanged = true;
}
// Tests a point in the bitmap.
// x:y: 0..m_bmSize-1
bool CTaskGoto::BitmapTestDot(int rank, int x, int y)
{
if ( x < 0 || x >= m_bmSize ||
y < 0 || y >= m_bmSize ) return false;
if ( x < m_bmMinX || x > m_bmMaxX ||
y < m_bmMinY || y > m_bmMaxY )
{
BitmapTerrain(x-10,y-10, x+10,y+10); // remade a layer
}
return m_bmArray[rank*m_bmLine*m_bmSize + m_bmLine*y + x/8] & (1<<x%8);
}