colobot/colobot-base/math/geometry.h

660 lines
18 KiB
C++

/*
* This file is part of the Colobot: Gold Edition source code
* Copyright (C) 2001-2023, Daniel Roux, EPSITEC SA & TerranovaTeam
* http://epsitec.ch; http://colobot.info; http://github.com/colobot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://gnu.org/licenses
*/
/**
* \file math/geometry.h
* \brief Math functions related to 3D geometry calculations, transformations, etc.
*/
#pragma once
#include "math/const.h"
#include "math/func.h"
#include <glm/glm.hpp>
#include <glm/ext.hpp>
#include <cmath>
#include <cstdlib>
// Math module namespace
namespace Math
{
//! Returns py up on the line \a a - \a b
inline float MidPoint(const glm::vec2&a, const glm::vec2&b, float px)
{
if (IsEqual(a.x, b.x))
{
if (a.y < b.y)
return Math::HUGE_NUM;
else
return -Math::HUGE_NUM;
}
return (b.y-a.y) * (px-a.x) / (b.x-a.x) + a.y;
}
//! Tests whether the point \a p is inside the triangle (\a a,\a b,\a c)
inline bool IsInsideTriangle(glm::vec2 a, glm::vec2 b, glm::vec2 c, glm::vec2 p)
{
float n, m;
if ( p.x < a.x && p.x < b.x && p.x < c.x ) return false;
if ( p.x > a.x && p.x > b.x && p.x > c.x ) return false;
if ( p.y < a.y && p.y < b.y && p.y < c.y ) return false;
if ( p.y > a.y && p.y > b.y && p.y > c.y ) return false;
if ( a.x > b.x ) std::swap(a,b);
if ( a.x > c.x ) std::swap(a,c);
if ( c.x < a.x ) std::swap(c,a);
if ( c.x < b.x ) std::swap(c,b);
n = MidPoint(a, b, p.x);
m = MidPoint(a, c, p.x);
if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;
n = MidPoint(c, b, p.x);
m = MidPoint(c, a, p.x);
if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;
return true;
}
//! Rotates a point around a center
/**
* \param center center of rotation
* \param angle angle [radians] (positive is CCW)
* \param p the point to be rotated
*/
inline glm::vec2 RotatePoint(const glm::vec2& center, float angle, const glm::vec2& p)
{
glm::vec2 a;
a.x = p.x-center.x;
a.y = p.y-center.y;
glm::vec2 b;
b.x = a.x*cosf(angle) - a.y*sinf(angle);
b.y = a.x*sinf(angle) + a.y*cosf(angle);
b.x += center.x;
b.y += center.y;
return b;
}
//! Rotates a point around the origin (0,0)
/**
* \param angle angle [radians] (positive is CCW)
* \param p the point to be rotated
*/
inline glm::vec2 RotatePoint(float angle, const glm::vec2&p)
{
float x = p.x*cosf(angle) - p.y*sinf(angle);
float y = p.x*sinf(angle) + p.y*cosf(angle);
return { x, y };
}
//! Rotates a vector (dist, 0)
/**
* \param angle angle [radians] (positive is CCW)
* \param dist distance to origin
*/
inline glm::vec2 RotatePoint(float angle, float dist)
{
float x = dist*cosf(angle);
float y = dist*sinf(angle);
return { x, y };
}
//! Rotates a point around a center on 2D plane
/**
* \param cx,cy center of rotation
* \param angle angle of rotation [radians] (positive is CCW)
* \param px,py point coordinates to rotate
*/
inline void RotatePoint(float cx, float cy, float angle, float &px, float &py)
{
float ax, ay;
px -= cx;
py -= cy;
ax = px*cosf(angle) - py*sinf(angle);
ay = px*sinf(angle) + py*cosf(angle);
px = cx+ax;
py = cy+ay;
}
//! Rotates a point around a center in space
/**
* \a angleH is rotation along Y axis (heading) while \a angleV is rotation along X axis (TODO: ?).
*
* \param center center of rotation
* \param angleH,angleV rotation angles [radians] (positive is CCW)
* \param p the point to be rotated
*/
inline void RotatePoint(const glm::vec3 &center, float angleH, float angleV, glm::vec3 &p)
{
p.x -= center.x;
p.y -= center.y;
p.z -= center.z;
glm::vec3 b{};
b.x = p.x*cosf(angleH) - p.z*sinf(angleH);
b.y = p.z*sinf(angleV) + p.y*cosf(angleV);
b.z = p.x*sinf(angleH) + p.z*cosf(angleH);
p = center + b;
}
//! Rotates a point around a center in space
/**
* The rotation is performed first along Y axis (\a angleH) and then along X axis (\a angleV).
*
* \param center center of rotation
* \param angleH,angleV rotation angles [radians] (positive is CCW)
* \param p the point to be rotated
*/
inline void RotatePoint2(const glm::vec3 center, float angleH, float angleV, glm::vec3 &p)
{
p.x -= center.x;
p.y -= center.y;
p.z -= center.z;
glm::vec3 a{};
a.x = p.x*cosf(angleH) - p.z*sinf(angleH);
a.y = p.y;
a.z = p.x*sinf(angleH) + p.z*cosf(angleH);
glm::vec3 b{};
b.x = a.x;
b.y = a.z*sinf(angleV) + a.y*cosf(angleV);
b.z = a.z*cosf(angleV) - a.y*sinf(angleV);
p = center + b;
}
//! Returns the angle between point (x,y) and (0,0)
inline float RotateAngle(float x, float y)
{
if (x == 0.0f && y == 0.0f) return 0.0f;
if (x >= 0.0f)
{
if (y >= 0.0f)
{
if (x > y) return atanf(y/x);
else return PI*0.5f - atanf(x/y);
}
else
{
if (x > -y) return PI*2.0f + atanf(y/x);
else return PI*1.5f - atanf(x/y);
}
}
else
{
if (y >= 0.0f)
{
if (-x > y) return PI*1.0f + atanf(y/x);
else return PI*0.5f - atanf(x/y);
}
else
{
if (-x > -y) return PI*1.0f + atanf(y/x);
else return PI*1.5f - atanf(x/y);
}
}
}
//! Calculates the angle between two points and a center
/**
* \param center the center point
* \param p1,p2 the two points
* \returns the angle [radians] (positive is CCW)
*/
inline float RotateAngle(const glm::vec2&center, const glm::vec2&p1, const glm::vec2&p2)
{
if (glm::all(glm::epsilonEqual(p1, center, TOLERANCE)))
return 0;
if (glm::all(glm::epsilonEqual(p2, center, TOLERANCE)))
return 0;
float a1 = asinf((p1.y - center.y) / glm::distance(p1, center));
float a2 = asinf((p2.y - center.y) / glm::distance(p2, center));
if (p1.x < center.x) a1 = PI - a1;
if (p2.x < center.x) a2 = PI - a2;
float a = a2 - a1;
if (a < 0)
a += 2.0f*PI;
return a;
}
//! Loads view matrix from the given vectors
/**
* \param mat result matrix
* \param from origin
* \param at view direction
* \param worldUp up vector
*/
inline void LoadViewMatrix(glm::mat4 &mat, const glm::vec3 &from,
const glm::vec3 &at, const glm::vec3 &worldUp)
{
// Get the z basis vector, which points straight ahead. This is the
// difference from the eyepoint to the lookat point.
glm::vec3 view = at - from;
float length = glm::length(view);
assert(! IsZero(length) );
// Normalize the z basis vector
view /= length;
// Get the dot product, and calculate the projection of the z basis
// vector onto the up vector. The projection is the y basis vector.
float dotProduct = glm::dot(worldUp, view);
glm::vec3 up = worldUp - dotProduct * view;
// If this vector has near-zero length because the input specified a
// bogus up vector, let's try a default up vector
if ( IsZero(length = glm::length(up)) )
{
up = glm::vec3(0.0f, 1.0f, 0.0f) - view.y * view;
// If we still have near-zero length, resort to a different axis.
if ( IsZero(length = glm::length(up)) )
{
up = glm::vec3(0.0f, 0.0f, 1.0f) - view.z * view;
assert(! IsZero(glm::length(up)) );
}
}
// Normalize the y basis vector
up /= length;
// The x basis vector is found simply with the cross product of the y
// and z basis vectors
glm::vec3 right = glm::cross(up, view);
// Start building the matrix. The first three rows contains the basis
// vectors used to rotate the view to point at the lookat point
mat = glm::mat4(1.0f);
mat[0][0] = right.x;
mat[0][1] = up.x;
mat[0][2] = view.x;
mat[1][0] = right.y;
mat[1][1] = up.y;
mat[1][2] = view.y;
mat[2][0] = right.z;
mat[2][1] = up.z;
mat[2][2] = view.z;
// Do the translation values (rotations are still about the eyepoint)
mat[3][0] = -glm::dot(from, right);
mat[3][1] = -glm::dot(from, up);
mat[3][2] = -glm::dot(from, view);
}
//! Loads a perspective projection matrix
/**
* \param mat result matrix
* \param fov field of view in radians
* \param aspect aspect ratio (width / height)
* \param nearPlane distance to near cut plane
* \param farPlane distance to far cut plane
*/
inline void LoadProjectionMatrix(glm::mat4 &mat, float fov = Math::PI / 2.0f, float aspect = 1.0f,
float nearPlane = 1.0f, float farPlane = 1000.0f)
{
assert(fabs(farPlane - nearPlane) >= 0.01f);
assert(fabs(sin(fov / 2)) >= 0.01f);
float f = cosf(fov / 2.0f) / sinf(fov / 2.0f);
mat = glm::mat4(0.0f);
mat[0][0] = f / aspect;
mat[1][1] = f;
mat[2][2] = (nearPlane + farPlane) / (nearPlane - farPlane);
mat[2][3] = -1.0f;
mat[3][2] = (2.0f * farPlane * nearPlane) / (nearPlane - farPlane);
}
//! Loads an othogonal projection matrix
/**
* \param mat result matrix
* \param left,right coordinates for left and right vertical clipping planes
* \param bottom,top coordinates for bottom and top horizontal clipping planes
* \param zNear,zFar distance to nearer and farther depth clipping planes
*/
inline void LoadOrthoProjectionMatrix(glm::mat4 &mat, float left, float right, float bottom, float top,
float zNear = -1.0f, float zFar = 1.0f)
{
mat = glm::mat4(1.0f);
mat[0][0] = 2.0f / (right - left);
mat[1][1] = 2.0f / (top - bottom);
mat[2][2] = -2.0f / (zFar - zNear);
mat[3][0] = - (right + left) / (right - left);
mat[3][1] = - (top + bottom) / (top - bottom);
mat[3][2] = - (zFar + zNear) / (zFar - zNear);
}
//! Loads a translation matrix from given vector
/**
* \param mat result matrix
* \param trans vector of translation
*/
inline void LoadTranslationMatrix(glm::mat4 &mat, const glm::vec3 &trans)
{
mat = glm::translate(glm::mat4(1.0f), trans);
}
//! Loads a scaling matrix fom given vector
/**
* \param mat result matrix
* \param scale vector with scaling factors for X, Y, Z
*/
inline void LoadScaleMatrix(glm::mat4 &mat, const glm::vec3 &scale)
{
mat = glm::scale(glm::mat4(1.0f), scale);
}
//! Loads a rotation matrix along the X axis
/**
* \param mat result matrix
* \param angle angle [radians]
*/
inline void LoadRotationXMatrix(glm::mat4 &mat, float angle)
{
mat = glm::mat4(1.0f);
mat[1][1] = cosf(angle);
mat[1][2] = sinf(angle);
mat[2][1] = -sinf(angle);
mat[2][2] = cosf(angle);
}
//! Loads a rotation matrix along the Y axis
/**
* \param mat result matrix
* \param angle angle [radians]
*/
inline void LoadRotationYMatrix(glm::mat4 &mat, float angle)
{
mat = glm::mat4(1.0f);
mat[0][0] = cosf(angle);
mat[0][2] = -sinf(angle);
mat[2][0] = sinf(angle);
mat[2][2] = cosf(angle);
}
//! Loads a rotation matrix along the Z axis
/**
* \param mat result matrix
* \param angle angle [radians]
*/
inline void LoadRotationZMatrix(glm::mat4 &mat, float angle)
{
mat = glm::mat4(1.0f);
mat[0][0] = cosf(angle);
mat[0][1] = sinf(angle);
mat[1][0] = -sinf(angle);
mat[1][1] = cosf(angle);
}
//! Loads a rotation matrix along the given axis
/**
* \param mat result matrix
* \param dir axis of rotation
* \param angle angle [radians]
*/
inline void LoadRotationMatrix(glm::mat4 &mat, const glm::vec3 &dir, float angle)
{
float cos = cosf(angle);
float sin = sinf(angle);
glm::vec3 v = glm::normalize(dir);
mat = glm::mat4(1.0f);
mat[0][0] = (v.x * v.x) * (1.0f - cos) + cos;
mat[0][1] = (v.x * v.y) * (1.0f - cos) - (v.z * sin);
mat[0][2] = (v.x * v.z) * (1.0f - cos) + (v.y * sin);
mat[1][0] = (v.y * v.x) * (1.0f - cos) + (v.z * sin);
mat[1][1] = (v.y * v.y) * (1.0f - cos) + cos ;
mat[1][2] = (v.y * v.z) * (1.0f - cos) - (v.x * sin);
mat[2][0] = (v.z * v.x) * (1.0f - cos) - (v.y * sin);
mat[2][1] = (v.z * v.y) * (1.0f - cos) + (v.x * sin);
mat[2][2] = (v.z * v.z) * (1.0f - cos) + cos;
}
//! Calculates the matrix to make three rotations in the order X, Z and Y
inline void LoadRotationXZYMatrix(glm::mat4 &mat, const glm::vec3 &angles)
{
glm::mat4 temp;
LoadRotationXMatrix(temp, angles.x);
LoadRotationZMatrix(mat, angles.z);
mat = temp * mat;
LoadRotationYMatrix(temp, angles.y);
mat = temp * mat;
}
//! Calculates the matrix to make three rotations in the order Z, X and Y
inline void LoadRotationZXYMatrix(glm::mat4 &mat, const glm::vec3 &angles)
{
glm::mat4 temp;
LoadRotationZMatrix(temp, angles.z);
LoadRotationXMatrix(mat, angles.x);
mat = temp * mat;
LoadRotationYMatrix(temp, angles.y);
mat = temp * mat;
}
//! Returns the distance between projections on XZ plane of two vectors
inline float DistanceProjected(const glm::vec3 &a, const glm::vec3 &b)
{
return sqrtf( (a.x-b.x)*(a.x-b.x) +
(a.z-b.z)*(a.z-b.z) );
}
//! Returns the normal vector to a plane
/**
* \param p1,p2,p3 points defining the plane
*/
inline glm::vec3 NormalToPlane(const glm::vec3 &p1, const glm::vec3 &p2, const glm::vec3 &p3)
{
glm::vec3 u = p3 - p1;
glm::vec3 v = p2 - p1;
return glm::normalize(glm::cross(u, v));
}
//! Returns a point on the line \a p1 - \a p2, in \a dist distance from \a p1
/**
* \param p1,p2 line start and end
* \param dist scaling factor from \a p1, relative to distance between \a p1 and \a p2
*/
inline glm::vec3 SegmentPoint(const glm::vec3 &p1, const glm::vec3 &p2, float dist)
{
glm::vec3 direction = glm::normalize(p2 - p1);
return p1 + direction * dist;
}
//! Returns the distance between given point and a plane
/**
* \param p the point
* \param a,b,c points defining the plane
*/
inline float DistanceToPlane(const glm::vec3 &a, const glm::vec3 &b,
const glm::vec3 &c, const glm::vec3 &p)
{
glm::vec3 n = NormalToPlane(a, b, c);
float d = -(n.x*a.x + n.y*a.y + n.z*a.z);
return fabs(n.x*p.x + n.y*p.y + n.z*p.z + d);
}
//! Checks if two planes defined by three points are the same
/**
* \param plane1 array of three vectors defining the first plane
* \param plane2 array of three vectors defining the second plane
*/
inline bool IsSamePlane(const glm::vec3 (&plane1)[3], const glm::vec3 (&plane2)[3])
{
glm::vec3 n1 = NormalToPlane(plane1[0], plane1[1], plane1[2]);
glm::vec3 n2 = NormalToPlane(plane2[0], plane2[1], plane2[2]);
if ( fabs(n1.x-n2.x) > 0.1f ||
fabs(n1.y-n2.y) > 0.1f ||
fabs(n1.z-n2.z) > 0.1f )
return false;
float dist = DistanceToPlane(plane1[0], plane1[1], plane1[2], plane2[0]);
if ( dist > 0.1f )
return false;
return true;
}
//! Calculates the intersection "i" right "of" the plane "abc" (TODO: ?)
inline bool Intersect(const glm::vec3 &a, const glm::vec3 &b, const glm::vec3 &c,
const glm::vec3 &d, const glm::vec3 &e, glm::vec3 &i)
{
float d1 = (d.x-a.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
(d.y-a.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
(d.z-a.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
float d2 = (d.x-e.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
(d.y-e.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
(d.z-e.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
if (d2 == 0)
return false;
i.x = d.x + d1/d2*(e.x-d.x);
i.y = d.y + d1/d2*(e.y-d.y);
i.z = d.z + d1/d2*(e.z-d.z);
return true;
}
//! Calculates the intersection of the straight line passing through p (x, z)
/** Line is parallel to the y axis, with the plane abc. Returns p.y. (TODO: ?) */
inline bool IntersectY(const glm::vec3 &a, const glm::vec3 &b, const glm::vec3 &c, glm::vec3 &p)
{
float d = (b.x-a.x)*(c.z-a.z) - (c.x-a.x)*(b.z-a.z);
float d1 = (p.x-a.x)*(c.z-a.z) - (c.x-a.x)*(p.z-a.z);
float d2 = (b.x-a.x)*(p.z-a.z) - (p.x-a.x)*(b.z-a.z);
if (d == 0.0f)
return false;
p.y = a.y + d1/d*(b.y-a.y) + d2/d*(c.y-a.y);
return true;
}
//! Calculates the end point
inline glm::vec3 LookatPoint(const glm::vec3 &eye, float angleH, float angleV, float length)
{
glm::vec3 lookat = eye;
lookat.z += length;
RotatePoint(eye, angleH, angleV, lookat);
return lookat;
}
//! Transforms the point \a p by matrix \a m
/** Is equal to multiplying the matrix by the vector (of course without perspective divide). */
inline glm::vec3 Transform(const glm::mat4 &m, const glm::vec3 &p)
{
return glm::vec3(m * glm::vec4(p, 1.0f));
}
//! Transforms a vector \v by a matrix \m with perspective divide
inline glm::vec3 TransformDivide(const glm::mat4& m, const glm::vec3& v)
{
glm::vec4 result = m * glm::vec4(v, 1.0f);
if (IsZero(result.w))
return glm::vec3(result);
return glm::vec3(result) / result.w;
}
//! Calculates the projection of the point \a p on a straight line \a a to \a b
/**
* \param p point to project
* \param a,b two ends of the line
*/
inline glm::vec3 Projection(const glm::vec3 &a, const glm::vec3 &b, const glm::vec3 &p)
{
float k = glm::dot(b - a, p - a);
k /= glm::dot(b - a, b - a);
return a + k*(b-a);
}
//! Calculates point of view to look at a center two angles and a distance
inline glm::vec3 RotateView(glm::vec3 center, float angleH, float angleV, float dist)
{
glm::mat4 mat1, mat2;
LoadRotationZMatrix(mat1, -angleV);
LoadRotationYMatrix(mat2, -angleH);
glm::mat4 mat = mat2 * mat1;
glm::vec3 eye{};
eye.x = 0.0f+dist;
eye.y = 0.0f;
eye.z = 0.0f;
eye = Transform(mat, eye);
return eye+center;
}
} // namespace Math