567 lines
17 KiB
C++
567 lines
17 KiB
C++
// * This file is part of the COLOBOT source code
|
|
// * Copyright (C) 2001-2008, Daniel ROUX & EPSITEC SA, www.epsitec.ch
|
|
// * Copyright (C) 2012, Polish Portal of Colobot (PPC)
|
|
// *
|
|
// * This program is free software: you can redistribute it and/or modify
|
|
// * it under the terms of the GNU General Public License as published by
|
|
// * the Free Software Foundation, either version 3 of the License, or
|
|
// * (at your option) any later version.
|
|
// *
|
|
// * This program is distributed in the hope that it will be useful,
|
|
// * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// * GNU General Public License for more details.
|
|
// *
|
|
// * You should have received a copy of the GNU General Public License
|
|
// * along with this program. If not, see http://www.gnu.org/licenses/.
|
|
|
|
/**
|
|
* \file math/geometry.h
|
|
* \brief Math functions related to 3D geometry calculations, transformations, etc.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "const.h"
|
|
#include "func.h"
|
|
#include "point.h"
|
|
#include "vector.h"
|
|
#include "matrix.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdlib>
|
|
|
|
|
|
// Math module namespace
|
|
namespace Math
|
|
{
|
|
|
|
//! Returns py up on the line \a a - \a b
|
|
inline float MidPoint(const Math::Point &a, const Math::Point &b, float px)
|
|
{
|
|
if (IsEqual(a.x, b.x))
|
|
{
|
|
if (a.y < b.y)
|
|
return Math::HUGE_NUM;
|
|
else
|
|
return -Math::HUGE_NUM;
|
|
}
|
|
return (b.y-a.y) * (px-a.x) / (b.x-a.x) + a.y;
|
|
}
|
|
|
|
//! Tests whether the point \a p is inside the triangle (\a a,\a b,\a c)
|
|
inline bool IsInsideTriangle(Math::Point a, Math::Point b, Math::Point c, Math::Point p)
|
|
{
|
|
float n, m;
|
|
|
|
if ( p.x < a.x && p.x < b.x && p.x < c.x ) return false;
|
|
if ( p.x > a.x && p.x > b.x && p.x > c.x ) return false;
|
|
if ( p.y < a.y && p.y < b.y && p.y < c.y ) return false;
|
|
if ( p.y > a.y && p.y > b.y && p.y > c.y ) return false;
|
|
|
|
if ( a.x > b.x ) Swap(a,b);
|
|
if ( a.x > c.x ) Swap(a,c);
|
|
if ( c.x < a.x ) Swap(c,a);
|
|
if ( c.x < b.x ) Swap(c,b);
|
|
|
|
n = MidPoint(a, b, p.x);
|
|
m = MidPoint(a, c, p.x);
|
|
if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;
|
|
|
|
n = MidPoint(c, b, p.x);
|
|
m = MidPoint(c, a, p.x);
|
|
if ( (n>p.y||p.y>m) && (n<p.y||p.y<m) ) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//! Rotates a point around a center
|
|
/** \a center center of rotation
|
|
\a angle angle is in radians (positive is counterclockwise (CCW) )
|
|
\a p the point */
|
|
inline Math::Point RotatePoint(const Math::Point ¢er, float angle, const Math::Point &p)
|
|
{
|
|
Math::Point a;
|
|
a.x = p.x-center.x;
|
|
a.y = p.y-center.y;
|
|
|
|
Math::Point b;
|
|
b.x = a.x*cosf(angle) - a.y*sinf(angle);
|
|
b.y = a.x*sinf(angle) + a.y*cosf(angle);
|
|
|
|
b.x += center.x;
|
|
b.y += center.y;
|
|
|
|
return b;
|
|
}
|
|
|
|
//! Rotates a point around the origin (0,0)
|
|
/** \a angle angle in radians (positive is counterclockwise (CCW) )
|
|
\a p the point */
|
|
inline Math::Point RotatePoint(float angle, const Math::Point &p)
|
|
{
|
|
float x = p.x*cosf(angle) - p.y*sinf(angle);
|
|
float y = p.x*sinf(angle) + p.y*cosf(angle);
|
|
|
|
return Math::Point(x, y);
|
|
}
|
|
|
|
//! Rotates a vector (dist, 0).
|
|
/** \a angle angle is in radians (positive is counterclockwise (CCW) )
|
|
\a dist distance to origin */
|
|
inline Math::Point RotatePoint(float angle, float dist)
|
|
{
|
|
float x = dist*cosf(angle);
|
|
float y = dist*sinf(angle);
|
|
|
|
return Math::Point(x, y);
|
|
}
|
|
|
|
//! TODO documentation
|
|
inline void RotatePoint(float cx, float cy, float angle, float &px, float &py)
|
|
{
|
|
float ax, ay;
|
|
|
|
px -= cx;
|
|
py -= cy;
|
|
|
|
ax = px*cosf(angle) - py*sinf(angle);
|
|
ay = px*sinf(angle) + py*cosf(angle);
|
|
|
|
px = cx+ax;
|
|
py = cy+ay;
|
|
}
|
|
|
|
//! Rotates a point around a center in space.
|
|
/** \a center center of rotation
|
|
\a angleH,angleV rotation angles in radians (positive is counterclockwise (CCW) ) )
|
|
\a p the point
|
|
\returns the rotated point */
|
|
inline void RotatePoint(const Math::Vector ¢er, float angleH, float angleV, Math::Vector &p)
|
|
{
|
|
p.x -= center.x;
|
|
p.y -= center.y;
|
|
p.z -= center.z;
|
|
|
|
Math::Vector b;
|
|
b.x = p.x*cosf(angleH) - p.z*sinf(angleH);
|
|
b.y = p.z*sinf(angleV) + p.y*cosf(angleV);
|
|
b.z = p.x*sinf(angleH) + p.z*cosf(angleH);
|
|
|
|
p = center + b;
|
|
}
|
|
|
|
//! Rotates a point around a center in space.
|
|
/** \a center center of rotation
|
|
\a angleH,angleV rotation angles in radians (positive is counterclockwise (CCW) ) )
|
|
\a p the point
|
|
\returns the rotated point */
|
|
inline void RotatePoint2(const Math::Vector center, float angleH, float angleV, Math::Vector &p)
|
|
{
|
|
p.x -= center.x;
|
|
p.y -= center.y;
|
|
p.z -= center.z;
|
|
|
|
Math::Vector a;
|
|
a.x = p.x*cosf(angleH) - p.z*sinf(angleH);
|
|
a.y = p.y;
|
|
a.z = p.x*sinf(angleH) + p.z*cosf(angleH);
|
|
|
|
Math::Vector b;
|
|
b.x = a.x;
|
|
b.y = a.z*sinf(angleV) + a.y*cosf(angleV);
|
|
b.z = a.z*cosf(angleV) - a.y*sinf(angleV);
|
|
|
|
p = center + b;
|
|
}
|
|
|
|
//! Returns the angle between point (x,y) and (0,0)
|
|
inline float RotateAngle(float x, float y)
|
|
{
|
|
if ( (x == 0.0f) && (y == 0.0f) )
|
|
return 0.0f;
|
|
|
|
float atan = atan2(x, y);
|
|
|
|
if ((y < 0.0f) && (x >= 0.0f))
|
|
return -atan + 2.5f*PI;
|
|
else
|
|
return -atan + 0.5f*PI;
|
|
}
|
|
|
|
//! Calculates the angle between two points and one center
|
|
/** \a center the center point
|
|
\a p1,p2 the two points
|
|
\returns The angle in radians (positive is counterclockwise (CCW) ) */
|
|
inline float RotateAngle(const Math::Point ¢er, const Math::Point &p1, const Math::Point &p2)
|
|
{
|
|
if (PointsEqual(p1, center))
|
|
return 0;
|
|
|
|
if (PointsEqual(p2, center))
|
|
return 0;
|
|
|
|
float a1 = asinf((p1.y - center.y) / Distance(p1, center));
|
|
float a2 = asinf((p2.y - center.y) / Distance(p2, center));
|
|
|
|
if (p1.x < center.x) a1 = PI - a1;
|
|
if (p2.x < center.x) a2 = PI - a2;
|
|
|
|
float a = a2 - a1;
|
|
if (a < 0)
|
|
a += 2.0f*PI;
|
|
|
|
return a;
|
|
}
|
|
|
|
//! Loads view matrix from the given vectors
|
|
/** \a from origin
|
|
\a at view direction
|
|
\a worldUp up vector */
|
|
inline void LoadViewMatrix(Math::Matrix &mat, const Math::Vector &from,
|
|
const Math::Vector &at, const Math::Vector &worldUp)
|
|
{
|
|
// Get the z basis vector, which points straight ahead. This is the
|
|
// difference from the eyepoint to the lookat point.
|
|
Math::Vector view = at - from;
|
|
|
|
float length = view.Length();
|
|
assert(! IsZero(length) );
|
|
|
|
// Normalize the z basis vector
|
|
view /= length;
|
|
|
|
// Get the dot product, and calculate the projection of the z basis
|
|
// vector onto the up vector. The projection is the y basis vector.
|
|
float dotProduct = DotProduct(worldUp, view);
|
|
|
|
Math::Vector up = worldUp - dotProduct * view;
|
|
|
|
// If this vector has near-zero length because the input specified a
|
|
// bogus up vector, let's try a default up vector
|
|
if ( IsZero(length = up.Length()) )
|
|
{
|
|
up = Math::Vector(0.0f, 1.0f, 0.0f) - view.y * view;
|
|
|
|
// If we still have near-zero length, resort to a different axis.
|
|
if ( IsZero(length = up.Length()) )
|
|
{
|
|
up = Math::Vector(0.0f, 0.0f, 1.0f) - view.z * view;
|
|
|
|
assert(! IsZero(up.Length()) );
|
|
}
|
|
}
|
|
|
|
// Normalize the y basis vector
|
|
up /= length;
|
|
|
|
// The x basis vector is found simply with the cross product of the y
|
|
// and z basis vectors
|
|
Math::Vector right = CrossProduct(up, view);
|
|
|
|
// Start building the matrix. The first three rows contains the basis
|
|
// vectors used to rotate the view to point at the lookat point
|
|
mat.LoadIdentity();
|
|
|
|
/* (1,1) */ mat.m[0 ] = right.x;
|
|
/* (2,1) */ mat.m[1 ] = up.x;
|
|
/* (3,1) */ mat.m[2 ] = view.x;
|
|
/* (1,2) */ mat.m[4 ] = right.y;
|
|
/* (2,2) */ mat.m[5 ] = up.y;
|
|
/* (3,2) */ mat.m[6 ] = view.y;
|
|
/* (1,3) */ mat.m[8 ] = right.z;
|
|
/* (2,3) */ mat.m[9 ] = up.z;
|
|
/* (3,3) */ mat.m[10] = view.z;
|
|
|
|
// Do the translation values (rotations are still about the eyepoint)
|
|
/* (1,4) */ mat.m[12] = -DotProduct(from, right);
|
|
/* (2,4) */ mat.m[13] = -DotProduct(from, up);
|
|
/* (3,4) */ mat.m[14] = -DotProduct(from, view);
|
|
}
|
|
|
|
//! Loads a perspective projection matrix
|
|
/** \a fov field of view in radians
|
|
\a aspect aspect ratio (width / height)
|
|
\a nearPlane distance to near cut plane
|
|
\a farPlane distance to far cut plane */
|
|
inline void LoadProjectionMatrix(Math::Matrix &mat, float fov = Math::PI / 2.0f, float aspect = 1.0f,
|
|
float nearPlane = 1.0f, float farPlane = 1000.0f)
|
|
{
|
|
assert(fabs(farPlane - nearPlane) >= 0.01f);
|
|
assert(fabs(sin(fov / 2)) >= 0.01f);
|
|
|
|
float f = cosf(fov / 2.0f) / sinf(fov / 2.0f);
|
|
|
|
mat.LoadZero();
|
|
|
|
/* (1,1) */ mat.m[0 ] = f / aspect;
|
|
/* (2,2) */ mat.m[5 ] = f;
|
|
/* (3,3) */ mat.m[10] = (nearPlane + farPlane) / (nearPlane - farPlane);
|
|
/* (4,3) */ mat.m[11] = -1.0f;
|
|
/* (3,4) */ mat.m[14] = (2.0f * farPlane * nearPlane) / (nearPlane - farPlane);
|
|
}
|
|
|
|
//! Loads an othogonal projection matrix
|
|
/** \a left,right coordinates for left and right vertical clipping planes
|
|
\a bottom,top coordinates for bottom and top horizontal clipping planes
|
|
\a zNear,zFar distance to nearer and farther depth clipping planes */
|
|
inline void LoadOrthoProjectionMatrix(Math::Matrix &mat, float left, float right, float bottom, float top,
|
|
float zNear = -1.0f, float zFar = 1.0f)
|
|
{
|
|
mat.LoadIdentity();
|
|
|
|
/* (1,1) */ mat.m[0 ] = 2.0f / (right - left);
|
|
/* (2,2) */ mat.m[5 ] = 2.0f / (top - bottom);
|
|
/* (3,3) */ mat.m[10] = -2.0f / (zFar - zNear);
|
|
|
|
/* (1,4) */ mat.m[12] = - (right + left) / (right - left);
|
|
/* (2,4) */ mat.m[13] = - (top + bottom) / (top - bottom);
|
|
/* (3,4) */ mat.m[14] = - (zFar + zNear) / (zFar - zNear);
|
|
}
|
|
|
|
//! Loads a translation matrix from given vector
|
|
/** \a trans vector of translation*/
|
|
inline void LoadTranslationMatrix(Math::Matrix &mat, const Math::Vector &trans)
|
|
{
|
|
mat.LoadIdentity();
|
|
/* (1,4) */ mat.m[12] = trans.x;
|
|
/* (2,4) */ mat.m[13] = trans.y;
|
|
/* (3,4) */ mat.m[14] = trans.z;
|
|
}
|
|
|
|
//! Loads a scaling matrix fom given vector
|
|
/** \a scale vector with scaling factors for X, Y, Z */
|
|
inline void LoadScaleMatrix(Math::Matrix &mat, const Math::Vector &scale)
|
|
{
|
|
mat.LoadIdentity();
|
|
/* (1,1) */ mat.m[0 ] = scale.x;
|
|
/* (2,2) */ mat.m[5 ] = scale.y;
|
|
/* (3,3) */ mat.m[10] = scale.z;
|
|
}
|
|
|
|
//! Loads a rotation matrix along the X axis
|
|
/** \a angle angle in radians */
|
|
inline void LoadRotationXMatrix(Math::Matrix &mat, float angle)
|
|
{
|
|
mat.LoadIdentity();
|
|
/* (2,2) */ mat.m[5 ] = cosf(angle);
|
|
/* (3,2) */ mat.m[6 ] = sinf(angle);
|
|
/* (2,3) */ mat.m[9 ] = -sinf(angle);
|
|
/* (3,3) */ mat.m[10] = cosf(angle);
|
|
}
|
|
|
|
//! Loads a rotation matrix along the Y axis
|
|
/** \a angle angle in radians */
|
|
inline void LoadRotationYMatrix(Math::Matrix &mat, float angle)
|
|
{
|
|
mat.LoadIdentity();
|
|
/* (1,1) */ mat.m[0 ] = cosf(angle);
|
|
/* (3,1) */ mat.m[2 ] = -sinf(angle);
|
|
/* (1,3) */ mat.m[8 ] = sinf(angle);
|
|
/* (3,3) */ mat.m[10] = cosf(angle);
|
|
}
|
|
|
|
//! Loads a rotation matrix along the Z axis
|
|
/** \a angle angle in radians */
|
|
inline void LoadRotationZMatrix(Math::Matrix &mat, float angle)
|
|
{
|
|
mat.LoadIdentity();
|
|
/* (1,1) */ mat.m[0 ] = cosf(angle);
|
|
/* (2,1) */ mat.m[1 ] = sinf(angle);
|
|
/* (1,2) */ mat.m[4 ] = -sinf(angle);
|
|
/* (2,2) */ mat.m[5 ] = cosf(angle);
|
|
}
|
|
|
|
//! Loads a rotation matrix along the given axis
|
|
/** \a dir axis of rotation
|
|
\a angle angle in radians */
|
|
inline void LoadRotationMatrix(Math::Matrix &mat, const Math::Vector &dir, float angle)
|
|
{
|
|
float cos = cosf(angle);
|
|
float sin = sinf(angle);
|
|
Math::Vector v = Normalize(dir);
|
|
|
|
mat.LoadIdentity();
|
|
|
|
/* (1,1) */ mat.m[0 ] = (v.x * v.x) * (1.0f - cos) + cos;
|
|
/* (2,1) */ mat.m[1 ] = (v.x * v.y) * (1.0f - cos) - (v.z * sin);
|
|
/* (3,1) */ mat.m[2 ] = (v.x * v.z) * (1.0f - cos) + (v.y * sin);
|
|
|
|
/* (1,2) */ mat.m[4 ] = (v.y * v.x) * (1.0f - cos) + (v.z * sin);
|
|
/* (2,2) */ mat.m[5 ] = (v.y * v.y) * (1.0f - cos) + cos ;
|
|
/* (3,2) */ mat.m[6 ] = (v.y * v.z) * (1.0f - cos) - (v.x * sin);
|
|
|
|
/* (1,3) */ mat.m[8 ] = (v.z * v.x) * (1.0f - cos) - (v.y * sin);
|
|
/* (2,3) */ mat.m[9 ] = (v.z * v.y) * (1.0f - cos) + (v.x * sin);
|
|
/* (3,3) */ mat.m[10] = (v.z * v.z) * (1.0f - cos) + cos;
|
|
}
|
|
|
|
//! Calculates the matrix to make three rotations in the order X, Z and Y
|
|
inline void LoadRotationXZYMatrix(Math::Matrix &mat, const Math::Vector &angle)
|
|
{
|
|
Math::Matrix temp;
|
|
LoadRotationXMatrix(temp, angle.x);
|
|
|
|
LoadRotationZMatrix(mat, angle.z);
|
|
mat = Math::MultiplyMatrices(temp, mat);
|
|
|
|
LoadRotationYMatrix(temp, angle.y);
|
|
mat = Math::MultiplyMatrices(temp, mat);
|
|
}
|
|
|
|
//! Calculates the matrix to make three rotations in the order Z, X and Y
|
|
inline void LoadRotationZXYMatrix(Math::Matrix &mat, const Math::Vector &angle)
|
|
{
|
|
Math::Matrix temp;
|
|
LoadRotationZMatrix(temp, angle.z);
|
|
|
|
LoadRotationXMatrix(mat, angle.x);
|
|
mat = Math::MultiplyMatrices(temp, mat);
|
|
|
|
LoadRotationYMatrix(temp, angle.y);
|
|
mat = Math::MultiplyMatrices(temp, mat);
|
|
}
|
|
|
|
//! Returns the distance between projections on XZ plane of two vectors
|
|
inline float DistanceProjected(const Math::Vector &a, const Math::Vector &b)
|
|
{
|
|
return sqrtf( (a.x-b.x)*(a.x-b.x) +
|
|
(a.z-b.z)*(a.z-b.z) );
|
|
}
|
|
|
|
//! Returns the normal vector to a plane
|
|
/** \param p1,p2,p3 points defining the plane */
|
|
inline Math::Vector NormalToPlane(const Math::Vector &p1, const Math::Vector &p2, const Math::Vector &p3)
|
|
{
|
|
Math::Vector u = p3 - p1;
|
|
Math::Vector v = p2 - p1;
|
|
|
|
return Normalize(CrossProduct(u, v));
|
|
}
|
|
|
|
//! Returns a point on the line \a p1 - \a p2, in \a dist distance from \a p1
|
|
/** \a p1,p2 line start and end
|
|
\a dist scaling factor from \a p1, relative to distance between \a p1 and \a p2 */
|
|
inline Math::Vector SegmentPoint(const Math::Vector &p1, const Math::Vector &p2, float dist)
|
|
{
|
|
return p1 + (p2 - p1) * dist;
|
|
}
|
|
|
|
//! Returns the distance between given point and a plane
|
|
/** \param p the point
|
|
\param a,b,c points defining the plane */
|
|
inline float DistanceToPlane(const Math::Vector &a, const Math::Vector &b,
|
|
const Math::Vector &c, const Math::Vector &p)
|
|
{
|
|
Math::Vector n = NormalToPlane(a, b, c);
|
|
float d = -(n.x*a.x + n.y*a.y + n.z*a.z);
|
|
|
|
return fabs(n.x*p.x + n.y*p.y + n.z*p.z + d);
|
|
}
|
|
|
|
//! Checks if two planes defined by three points are the same
|
|
/** \a plane1 array of three vectors defining the first plane
|
|
\a plane2 array of three vectors defining the second plane */
|
|
inline bool IsSamePlane(const Math::Vector (&plane1)[3], const Math::Vector (&plane2)[3])
|
|
{
|
|
Math::Vector n1 = NormalToPlane(plane1[0], plane1[1], plane1[2]);
|
|
Math::Vector n2 = NormalToPlane(plane2[0], plane2[1], plane2[2]);
|
|
|
|
if ( fabs(n1.x-n2.x) > 0.1f ||
|
|
fabs(n1.y-n2.y) > 0.1f ||
|
|
fabs(n1.z-n2.z) > 0.1f )
|
|
return false;
|
|
|
|
float dist = DistanceToPlane(plane1[0], plane1[1], plane1[2], plane2[0]);
|
|
if ( dist > 0.1f )
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
//! Calculates the intersection "i" right "of" the plane "abc".
|
|
inline bool Intersect(const Math::Vector &a, const Math::Vector &b, const Math::Vector &c,
|
|
const Math::Vector &d, const Math::Vector &e, Math::Vector &i)
|
|
{
|
|
float d1 = (d.x-a.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
|
|
(d.y-a.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
|
|
(d.z-a.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
|
|
|
|
float d2 = (d.x-e.x)*((b.y-a.y)*(c.z-a.z)-(c.y-a.y)*(b.z-a.z)) -
|
|
(d.y-e.y)*((b.x-a.x)*(c.z-a.z)-(c.x-a.x)*(b.z-a.z)) +
|
|
(d.z-e.z)*((b.x-a.x)*(c.y-a.y)-(c.x-a.x)*(b.y-a.y));
|
|
|
|
if (d2 == 0)
|
|
return false;
|
|
|
|
i.x = d.x + d1/d2*(e.x-d.x);
|
|
i.y = d.y + d1/d2*(e.y-d.y);
|
|
i.z = d.z + d1/d2*(e.z-d.z);
|
|
|
|
return true;
|
|
}
|
|
|
|
//! Calculates the intersection of the straight line passing through p (x, z)
|
|
/** Line is parallel to the y axis, with the plane abc. Returns p.y. */
|
|
inline bool IntersectY(const Math::Vector &a, const Math::Vector &b, const Math::Vector &c, Math::Vector &p)
|
|
{
|
|
float d = (b.x-a.x)*(c.z-a.z) - (c.x-a.x)*(b.z-a.z);
|
|
float d1 = (p.x-a.x)*(c.z-a.z) - (c.x-a.x)*(p.z-a.z);
|
|
float d2 = (b.x-a.x)*(p.z-a.z) - (p.x-a.x)*(b.z-a.z);
|
|
|
|
if (d == 0.0f)
|
|
return false;
|
|
|
|
p.y = a.y + d1/d*(b.y-a.y) + d2/d*(c.y-a.y);
|
|
|
|
return true;
|
|
}
|
|
|
|
//! Calculates the end point
|
|
inline Math::Vector LookatPoint(const Math::Vector &eye, float angleH, float angleV, float length)
|
|
{
|
|
Math::Vector lookat = eye;
|
|
lookat.z += length;
|
|
|
|
RotatePoint(eye, angleH, angleV, lookat);
|
|
|
|
return lookat;
|
|
}
|
|
|
|
//! TODO documentation
|
|
inline Math::Vector Transform(const Math::Matrix &m, const Math::Vector &p)
|
|
{
|
|
return MatrixVectorMultiply(m, p);
|
|
}
|
|
|
|
//! Calculates the projection of the point \a p on a straight line \a a to \a b.
|
|
/** \a p point to project
|
|
\a a,b two ends of the line */
|
|
inline Math::Vector Projection(const Math::Vector &a, const Math::Vector &b, const Math::Vector &p)
|
|
{
|
|
float k = DotProduct(b - a, p - a);
|
|
k /= DotProduct(b - a, b - a);
|
|
|
|
return a + k*(b-a);
|
|
}
|
|
|
|
//! Calculates point of view to look at a center two angles and a distance
|
|
inline Math::Vector RotateView(Math::Vector center, float angleH, float angleV, float dist)
|
|
{
|
|
Math::Matrix mat1, mat2;
|
|
LoadRotationZMatrix(mat1, -angleV);
|
|
LoadRotationYMatrix(mat2, -angleH);
|
|
|
|
Math::Matrix mat = MultiplyMatrices(mat2, mat1);
|
|
|
|
Math::Vector eye;
|
|
eye.x = 0.0f+dist;
|
|
eye.y = 0.0f;
|
|
eye.z = 0.0f;
|
|
eye = Transform(mat, eye);
|
|
|
|
return eye+center;
|
|
}
|
|
|
|
}; // namespace Math
|