/* * This file is part of the Colobot: Gold Edition source code * Copyright (C) 2001-2016, Daniel Roux, EPSITEC SA & TerranovaTeam * http://epsitec.ch; http://colobot.info; http://github.com/colobot * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see http://gnu.org/licenses */ #include "graphics/opengl/gldevice.h" #include "common/config.h" #include "common/image.h" #include "common/logger.h" #include "graphics/core/light.h" #include "graphics/engine/engine.h" #include "graphics/opengl/glframebuffer.h" #include "math/geometry.h" #include #include // Graphics module namespace namespace Gfx { CGLDevice::CGLDevice(const DeviceConfig &config) : m_config(config) {} CGLDevice::~CGLDevice() { } void CGLDevice::DebugHook() { /* This function is only called here, so it can be used * as a breakpoint when debugging using gDEBugger */ glColor3i(0, 0, 0); } void CGLDevice::DebugLights() { Gfx::ColorHSV color(0.0, 1.0, 1.0); glLineWidth(3.0f); glDisable(GL_LIGHTING); glDepthMask(GL_FALSE); glDisable(GL_BLEND); Math::Matrix saveWorldMat = m_worldMat; m_worldMat.LoadIdentity(); UpdateModelviewMatrix(); for (int i = 0; i < static_cast( m_lights.size() ); ++i) { color.h = static_cast(i) / static_cast(m_lights.size()); if (m_lightsEnabled[i]) { const Light& l = m_lights[i]; if (l.type == LIGHT_DIRECTIONAL) { Gfx::VertexCol v[2]; v[0].coord = -Math::Normalize(l.direction) * 100.0f + Math::Vector(0.0f, 0.0f, 1.0f) * i; v[0].color = HSV2RGB(color); v[1].coord = Math::Normalize(l.direction) * 100.0f + Math::Vector(0.0f, 0.0f, 1.0f) * i; v[1].color = HSV2RGB(color); while (v[0].coord.y < 60.0f && v[0].coord.y < 60.0f) { v[0].coord.y += 10.0f; v[1].coord.y += 10.0f; } DrawPrimitive(PRIMITIVE_LINES, v, 2); v[0].coord = v[1].coord + Math::Normalize(v[0].coord - v[1].coord) * 50.0f; glLineWidth(10.0f); DrawPrimitive(PRIMITIVE_LINES, v, 2); glLineWidth(3.0f); } else if (l.type == LIGHT_POINT) { Gfx::VertexCol v[8]; for (int i = 0; i < 8; ++i) v[i].color = HSV2RGB(color); v[0].coord = l.position + Math::Vector(-1.0f, -1.0f, -1.0f) * 4.0f; v[1].coord = l.position + Math::Vector( 1.0f, -1.0f, -1.0f) * 4.0f; v[2].coord = l.position + Math::Vector( 1.0f, 1.0f, -1.0f) * 4.0f; v[3].coord = l.position + Math::Vector(-1.0f, 1.0f, -1.0f) * 4.0f; v[4].coord = l.position + Math::Vector(-1.0f, -1.0f, -1.0f) * 4.0f; DrawPrimitive(PRIMITIVE_LINE_STRIP, v, 5); v[0].coord = l.position + Math::Vector(-1.0f, -1.0f, 1.0f) * 4.0f; v[1].coord = l.position + Math::Vector( 1.0f, -1.0f, 1.0f) * 4.0f; v[2].coord = l.position + Math::Vector( 1.0f, 1.0f, 1.0f) * 4.0f; v[3].coord = l.position + Math::Vector(-1.0f, 1.0f, 1.0f) * 4.0f; v[4].coord = l.position + Math::Vector(-1.0f, -1.0f, 1.0f) * 4.0f; DrawPrimitive(PRIMITIVE_LINE_STRIP, v, 5); v[0].coord = l.position + Math::Vector(-1.0f, -1.0f, -1.0f) * 4.0f; v[1].coord = l.position + Math::Vector(-1.0f, -1.0f, 1.0f) * 4.0f; v[2].coord = l.position + Math::Vector( 1.0f, -1.0f, -1.0f) * 4.0f; v[3].coord = l.position + Math::Vector( 1.0f, -1.0f, 1.0f) * 4.0f; v[4].coord = l.position + Math::Vector( 1.0f, 1.0f, -1.0f) * 4.0f; v[5].coord = l.position + Math::Vector( 1.0f, 1.0f, 1.0f) * 4.0f; v[6].coord = l.position + Math::Vector(-1.0f, 1.0f, -1.0f) * 4.0f; v[7].coord = l.position + Math::Vector(-1.0f, 1.0f, 1.0f) * 4.0f; DrawPrimitive(PRIMITIVE_LINES, v, 8); } else if (l.type == LIGHT_SPOT) { Gfx::VertexCol v[5]; for (int i = 0; i < 5; ++i) v[i].color = HSV2RGB(color); v[0].coord = l.position + Math::Vector(-1.0f, 0.0f, -1.0f) * 4.0f; v[1].coord = l.position + Math::Vector( 1.0f, 0.0f, -1.0f) * 4.0f; v[2].coord = l.position + Math::Vector( 1.0f, 0.0f, 1.0f) * 4.0f; v[3].coord = l.position + Math::Vector(-1.0f, 0.0f, 1.0f) * 4.0f; v[4].coord = l.position + Math::Vector(-1.0f, 0.0f, -1.0f) * 4.0f; DrawPrimitive(PRIMITIVE_LINE_STRIP, v, 5); v[0].coord = l.position; v[1].coord = l.position + Math::Normalize(l.direction) * 100.0f; glEnable(GL_LINE_STIPPLE); glLineStipple(3.0, 0xFF); DrawPrimitive(PRIMITIVE_LINES, v, 2); glDisable(GL_LINE_STIPPLE); } } } glLineWidth(1.0f); glEnable(GL_LIGHTING); glDepthMask(GL_TRUE); glEnable(GL_BLEND); m_worldMat = saveWorldMat; UpdateModelviewMatrix(); } std::string CGLDevice::GetName() { return std::string("OpenGL 1.4"); } bool CGLDevice::Create() { GetLogger()->Info("Creating CDevice - OpenGL 1.4\n"); if (!InitializeGLEW()) { m_errorMessage = "An error occured while initializing GLEW."; return false; } // Extract OpenGL version int glMajor = 1, glMinor = 1; int glVersion = GetOpenGLVersion(glMajor, glMinor); if (glVersion < 13) { GetLogger()->Error("Unsupported OpenGL version: %d.%d\n", glMajor, glMinor); GetLogger()->Error("OpenGL 1.3 or newer is required to use this engine.\n"); m_errorMessage = "It seems your graphics card does not support OpenGL 1.3.\n"; m_errorMessage += "Please make sure you have appropriate hardware and newest drivers installed.\n\n"; m_errorMessage += GetHardwareInfo(); return false; } const char* version = reinterpret_cast(glGetString(GL_VERSION)); const char* renderer = reinterpret_cast(glGetString(GL_RENDERER)); GetLogger()->Info("OpenGL %s\n", version); GetLogger()->Info("%s\n", renderer); // Detect Shadow mapping support if (glVersion >= 14) // Core depth texture+shadow, OpenGL 1.4+ { m_shadowMappingSupport = SMS_CORE; GetLogger()->Info("Shadow mapping available (core)\n"); } else if (glewIsSupported("GL_ARB_depth_texture GL_ARB_shadow")) // ARB depth texture + shadow { m_shadowMappingSupport = SMS_ARB; GetLogger()->Info("Shadow mapping available (ARB)\n"); } else // No Shadow mapping { m_shadowMappingSupport = SMS_NONE; GetLogger()->Info("Shadow mapping not available\n"); } // Detect support of anisotropic filtering m_anisotropyAvailable = glewIsSupported("GL_EXT_texture_filter_anisotropic"); if(m_anisotropyAvailable) { // Obtain maximum anisotropy level available float level; glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &level); m_maxAnisotropy = static_cast(level); GetLogger()->Info("Anisotropic filtering available\n"); GetLogger()->Info("Maximum anisotropy: %d\n", m_maxAnisotropy); } else { GetLogger()->Info("Anisotropic filtering not available\n"); } // Read maximum sample count for MSAA if(glewIsSupported("GL_EXT_framebuffer_multisample")) { glGetIntegerv(GL_MAX_SAMPLES_EXT, &m_maxSamples); GetLogger()->Info("Multisampling supported, max samples: %d\n", m_maxSamples); } else { GetLogger()->Info("Multisampling not supported\n"); } // check for glMultiDrawArrays() if (glVersion >= 14) m_multiDrawArrays = true; GetLogger()->Info("Auto-detecting VBO support\n"); // detecting VBO ARB extension bool vboARB = glewIsSupported("GL_ARB_vertex_buffer_object"); // VBO is core OpenGL feature since 1.5 // everything below 1.5 means no VBO support if (glVersion >= 15) { GetLogger()->Info("Core VBO supported\n", glMajor, glMinor); m_vertexBufferType = VBT_VBO_CORE; } else if (vboARB) // VBO ARB extension available { GetLogger()->Info("ARB VBO supported\n"); m_vertexBufferType = VBT_VBO_ARB; } else // no VBO support { GetLogger()->Info("VBO not supported\n"); m_vertexBufferType = VBT_DISPLAY_LIST; } // This is mostly done in all modern hardware by default // DirectX doesn't even allow the option to turn off perspective correction anymore // So turn it on permanently glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // To avoid problems with scaling & lighting glEnable(GL_RESCALE_NORMAL); //glEnable(GL_NORMALIZE); // this needs some testing // Minimal depth bias to avoid Z-fighting //SetDepthBias(0.001f); glAlphaFunc(GL_GREATER, 0.1f); // Set just to be sure glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glViewport(0, 0, m_config.size.x, m_config.size.y); int numLights = 0; glGetIntegerv(GL_MAX_LIGHTS, &numLights); m_lights = std::vector(numLights, Light()); m_lightsEnabled = std::vector (numLights, false); int maxTextures = 0; glGetIntegerv(GL_MAX_TEXTURE_UNITS, &maxTextures); GetLogger()->Info("Maximum texture units: %d\n", maxTextures); m_currentTextures = std::vector (maxTextures, Texture()); m_texturesEnabled = std::vector (maxTextures, false); m_textureStageParams = std::vector(maxTextures, TextureStageParams()); m_remap = std::vector (maxTextures, 0); // default mapping for (int i = 0; i < maxTextures; i++) m_remap[i] = i; // special remapping for quality shadows if (maxTextures >= 4) { m_remap[0] = 2; m_remap[1] = 3; m_remap[2] = 0; m_remap[3] = 1; m_shadowQuality = true; GetLogger()->Debug("Using quality shadows\n"); } // create white texture glGenTextures(1, &m_whiteTexture); glBindTexture(GL_TEXTURE_2D, m_whiteTexture); int color = 0xFFFFFFFF; glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, &color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); // create default framebuffer object FramebufferParams framebufferParams; framebufferParams.width = m_config.size.x; framebufferParams.height = m_config.size.y; framebufferParams.depth = m_config.depthSize; m_framebuffers["default"] = MakeUnique(framebufferParams); m_framebufferSupport = DetectFramebufferSupport(); if (m_framebufferSupport != FBS_NONE) { glGetIntegerv(GL_MAX_RENDERBUFFER_SIZE_EXT, &m_maxRenderbufferSize); GetLogger()->Info("Framebuffer supported\n"); GetLogger()->Info("Maximum renderbuffer size: %d\n", m_maxRenderbufferSize); } else { GetLogger()->Info("Framebuffer not supported\n"); } GetLogger()->Info("CDevice created successfully\n"); return true; } void CGLDevice::Destroy() { // delete framebuffers for (auto& framebuffer : m_framebuffers) framebuffer.second->Destroy(); m_framebuffers.clear(); // Delete the remaining textures // Should not be strictly necessary, but just in case DestroyAllTextures(); m_lights.clear(); m_lightsEnabled.clear(); m_currentTextures.clear(); m_texturesEnabled.clear(); m_textureStageParams.clear(); } void CGLDevice::ConfigChanged(const DeviceConfig& newConfig) { m_config = newConfig; // Reset state m_lighting = false; glViewport(0, 0, m_config.size.x, m_config.size.y); // create default framebuffer object FramebufferParams framebufferParams; framebufferParams.width = m_config.size.x; framebufferParams.height = m_config.size.y; framebufferParams.depth = m_config.depthSize; m_framebuffers["default"] = MakeUnique(framebufferParams); } void CGLDevice::BeginScene() { Clear(); glMatrixMode(GL_PROJECTION); glLoadMatrixf(m_projectionMat.Array()); UpdateModelviewMatrix(); } void CGLDevice::EndScene() { #ifdef DEV_BUILD CheckGLErrors(); #endif } void CGLDevice::Clear() { glDepthMask(GL_TRUE); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); } void CGLDevice::SetRenderMode(RenderMode mode) { // nothing is done } void CGLDevice::SetTransform(TransformType type, const Math::Matrix &matrix) { if (type == TRANSFORM_WORLD) { m_worldMat = matrix; UpdateModelviewMatrix(); m_combinedMatrixOutdated = true; } else if (type == TRANSFORM_VIEW) { m_viewMat = matrix; UpdateModelviewMatrix(); m_combinedMatrixOutdated = true; } else if (type == TRANSFORM_PROJECTION) { m_projectionMat = matrix; glMatrixMode(GL_PROJECTION); glLoadMatrixf(m_projectionMat.Array()); m_combinedMatrixOutdated = true; } else if (type == TRANSFORM_SHADOW) { m_shadowMatrix = matrix; glActiveTexture(GL_TEXTURE0 + m_remap[2]); glMatrixMode(GL_TEXTURE); glLoadMatrixf(m_shadowMatrix.Array()); } else { assert(false); } } void CGLDevice::UpdateModelviewMatrix() { glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glScalef(1.0f, 1.0f, -1.0f); glMultMatrixf(m_viewMat.Array()); glMultMatrixf(m_worldMat.Array()); glGetFloatv(GL_MODELVIEW_MATRIX, m_modelviewMat.Array()); if (m_lighting) { UpdateLightPositions(); } } void CGLDevice::SetMaterial(const Material &material) { m_material = material; glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, m_material.ambient.Array()); glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, m_material.diffuse.Array()); glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, m_material.specular.Array()); } int CGLDevice::GetMaxLightCount() { return m_lights.size(); } void CGLDevice::SetLight(int index, const Light &light) { assert(index >= 0); assert(index < static_cast( m_lights.size() )); m_lights[index] = light; // Indexing from GL_LIGHT0 should always work glLightfv(GL_LIGHT0 + index, GL_AMBIENT, const_cast(light.ambient.Array())); glLightfv(GL_LIGHT0 + index, GL_DIFFUSE, const_cast(light.diffuse.Array())); glLightfv(GL_LIGHT0 + index, GL_SPECULAR, const_cast(light.specular.Array())); glLightf(GL_LIGHT0 + index, GL_CONSTANT_ATTENUATION, light.attenuation0); glLightf(GL_LIGHT0 + index, GL_LINEAR_ATTENUATION, light.attenuation1); glLightf(GL_LIGHT0 + index, GL_QUADRATIC_ATTENUATION, light.attenuation2); if (light.type == LIGHT_SPOT) { glLightf(GL_LIGHT0 + index, GL_SPOT_CUTOFF, light.spotAngle * Math::RAD_TO_DEG); glLightf(GL_LIGHT0 + index, GL_SPOT_EXPONENT, light.spotIntensity); } else { glLightf(GL_LIGHT0 + index, GL_SPOT_CUTOFF, 180.0f); } UpdateLightPosition(index); } void CGLDevice::UpdateLightPosition(int index) { assert(index >= 0); assert(index < static_cast( m_lights.size() )); glMatrixMode(GL_MODELVIEW); glPushMatrix(); Light &light = m_lights[index]; if (light.type == LIGHT_POINT) { glLoadIdentity(); glScalef(1.0f, 1.0f, -1.0f); glMultMatrixf(m_viewMat.Array()); GLfloat position[4] = { light.position.x, light.position.y, light.position.z, 1.0f }; glLightfv(GL_LIGHT0 + index, GL_POSITION, position); } else { glLoadIdentity(); glScalef(1.0f, 1.0f, -1.0f); Math::Matrix mat = m_viewMat; mat.Set(1, 4, 0.0f); mat.Set(2, 4, 0.0f); mat.Set(3, 4, 0.0f); glMultMatrixf(mat.Array()); if (light.type == LIGHT_SPOT) { GLfloat direction[4] = { -light.direction.x, -light.direction.y, -light.direction.z, 1.0f }; glLightfv(GL_LIGHT0 + index, GL_SPOT_DIRECTION, direction); } else if (light.type == LIGHT_DIRECTIONAL) { GLfloat position[4] = { -light.direction.x, -light.direction.y, -light.direction.z, 0.0f }; glLightfv(GL_LIGHT0 + index, GL_POSITION, position); } } glPopMatrix(); } void CGLDevice::UpdateLightPositions() { glMatrixMode(GL_MODELVIEW); glPushMatrix(); // update spotlights and directional lights glLoadIdentity(); glScalef(1.0f, 1.0f, -1.0f); Math::Matrix mat = m_viewMat; mat.Set(1, 4, 0.0f); mat.Set(2, 4, 0.0f); mat.Set(3, 4, 0.0f); glMultMatrixf(mat.Array()); int lightIndex = 0; for (const Light &light : m_lights) { if (m_lightsEnabled[lightIndex]) { if (light.type == LIGHT_SPOT) { GLfloat direction[4] = { -light.direction.x, -light.direction.y, -light.direction.z, 1.0f }; glLightfv(GL_LIGHT0 + lightIndex, GL_SPOT_DIRECTION, direction); } else if (light.type == LIGHT_DIRECTIONAL) { GLfloat position[4] = { -light.direction.x, -light.direction.y, -light.direction.z, 0.0f }; glLightfv(GL_LIGHT0 + lightIndex, GL_POSITION, position); } } lightIndex++; } // update point lights glLoadIdentity(); glScalef(1.0f, 1.0f, -1.0f); glMultMatrixf(m_viewMat.Array()); lightIndex = 0; for (const Light &light : m_lights) { if (m_lightsEnabled[lightIndex]) { if (light.type == LIGHT_POINT) { GLfloat position[4] = { light.position.x, light.position.y, light.position.z, 1.0f }; glLightfv(GL_LIGHT0 + lightIndex, GL_POSITION, position); } } lightIndex++; } glPopMatrix(); } void CGLDevice::SetLightEnabled(int index, bool enabled) { assert(index >= 0); assert(index < static_cast( m_lights.size() )); m_lightsEnabled[index] = enabled; if (enabled) glEnable(GL_LIGHT0 + index); else glDisable(GL_LIGHT0 + index); } /** If image is invalid, returns invalid texture. Otherwise, returns pointer to new Texture struct. This struct must not be deleted in other way than through DeleteTexture() */ Texture CGLDevice::CreateTexture(CImage *image, const TextureCreateParams ¶ms) { ImageData *data = image->GetData(); if (data == nullptr) { GetLogger()->Error("Invalid texture data\n"); return Texture(); // invalid texture } Math::IntPoint originalSize = image->GetSize(); if (params.padToNearestPowerOfTwo) image->PadToNearestPowerOfTwo(); Texture tex = CreateTexture(data, params); tex.originalSize = originalSize; return tex; } Texture CGLDevice::CreateTexture(ImageData *data, const TextureCreateParams ¶ms) { Texture result; result.size.x = data->surface->w; result.size.y = data->surface->h; if (!Math::IsPowerOfTwo(result.size.x) || !Math::IsPowerOfTwo(result.size.y)) GetLogger()->Warn("Creating non-power-of-2 texture (%dx%d)!\n", result.size.x, result.size.y); result.originalSize = result.size; // Use & enable 1st texture stage glActiveTexture(GL_TEXTURE0 + m_remap[0]); glEnable(GL_TEXTURE_2D); glGenTextures(1, &result.id); glBindTexture(GL_TEXTURE_2D, result.id); // Set texture parameters GLint minF = GL_NEAREST, magF = GL_NEAREST; int mipmapLevel = 1; switch (params.filter) { case TEX_FILTER_NEAREST: minF = GL_NEAREST; magF = GL_NEAREST; break; case TEX_FILTER_BILINEAR: minF = GL_LINEAR; magF = GL_LINEAR; break; case TEX_FILTER_TRILINEAR: minF = GL_LINEAR_MIPMAP_LINEAR; magF = GL_LINEAR; mipmapLevel = CEngine::GetInstance().GetTextureMipmapLevel(); break; } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minF); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magF); // Set mipmap level and automatic mipmap generation if neccesary if (params.mipmap) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmapLevel - 1); glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE); } else { // Has to be set to 0 because no mipmaps are generated glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_FALSE); } // Set anisotropy level if available if (m_anisotropyAvailable) { float level = Math::Min(m_maxAnisotropy, CEngine::GetInstance().GetTextureAnisotropyLevel()); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, level); } bool convert = false; GLenum sourceFormat = 0; if (params.format == TEX_IMG_RGB) { sourceFormat = GL_RGB; result.alpha = false; } else if (params.format == TEX_IMG_BGR) { sourceFormat = GL_BGR; result.alpha = false; } else if (params.format == TEX_IMG_RGBA) { sourceFormat = GL_RGBA; result.alpha = true; } else if (params.format == TEX_IMG_BGRA) { sourceFormat = GL_BGRA; result.alpha = true; } else if (params.format == TEX_IMG_AUTO) { if (data->surface->format->BytesPerPixel == 4) { if ((data->surface->format->Amask == 0xFF000000) && (data->surface->format->Rmask == 0x00FF0000) && (data->surface->format->Gmask == 0x0000FF00) && (data->surface->format->Bmask == 0x000000FF)) { sourceFormat = GL_BGRA; result.alpha = true; } else if ((data->surface->format->Amask == 0xFF000000) && (data->surface->format->Bmask == 0x00FF0000) && (data->surface->format->Gmask == 0x0000FF00) && (data->surface->format->Rmask == 0x000000FF)) { sourceFormat = GL_RGBA; result.alpha = true; } else { sourceFormat = GL_RGBA; convert = true; } } else if (data->surface->format->BytesPerPixel == 3) { if ((data->surface->format->Rmask == 0xFF0000) && (data->surface->format->Gmask == 0x00FF00) && (data->surface->format->Bmask == 0x0000FF)) { sourceFormat = GL_BGR; result.alpha = false; } else if ((data->surface->format->Bmask == 0xFF0000) && (data->surface->format->Gmask == 0x00FF00) && (data->surface->format->Rmask == 0x0000FF)) { sourceFormat = GL_RGB; result.alpha = false; } else { sourceFormat = GL_RGBA; convert = true; } } else { GetLogger()->Error("Unknown data surface format"); assert(false); } } else assert(false); SDL_Surface* actualSurface = data->surface; SDL_Surface* convertedSurface = nullptr; if (convert) { SDL_PixelFormat format; format.BytesPerPixel = 4; format.BitsPerPixel = 32; format.Aloss = format.Bloss = format.Gloss = format.Rloss = 0; format.Amask = 0xFF000000; format.Ashift = 24; format.Bmask = 0x00FF0000; format.Bshift = 16; format.Gmask = 0x0000FF00; format.Gshift = 8; format.Rmask = 0x000000FF; format.Rshift = 0; format.palette = nullptr; convertedSurface = SDL_ConvertSurface(data->surface, &format, SDL_SWSURFACE); if (convertedSurface != nullptr) actualSurface = convertedSurface; } glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, actualSurface->w, actualSurface->h, 0, sourceFormat, GL_UNSIGNED_BYTE, actualSurface->pixels); SDL_FreeSurface(convertedSurface); m_allTextures.insert(result); // Restore the previous state of 1st stage glBindTexture(GL_TEXTURE_2D, m_currentTextures[0].id); if (! m_texturesEnabled[0]) glDisable(GL_TEXTURE_2D); return result; } Texture CGLDevice::CreateDepthTexture(int width, int height, int depth) { Texture result; if (m_shadowMappingSupport == SMS_NONE) { result.id = 0; return result; } result.alpha = false; result.size.x = width; result.size.y = height; // Use & enable 1st texture stage glActiveTexture(GL_TEXTURE0 + m_remap[0]); glGenTextures(1, &result.id); glBindTexture(GL_TEXTURE_2D, result.id); GLuint format = GL_DEPTH_COMPONENT; if (m_shadowMappingSupport == SMS_CORE) { switch (depth) { case 16: format = GL_DEPTH_COMPONENT16; break; case 24: format = GL_DEPTH_COMPONENT24; break; case 32: format = GL_DEPTH_COMPONENT32; break; } glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, GL_DEPTH_COMPONENT, GL_INT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL); } else { switch (depth) { case 16: format = GL_DEPTH_COMPONENT16_ARB; break; case 24: format = GL_DEPTH_COMPONENT24_ARB; break; case 32: format = GL_DEPTH_COMPONENT32_ARB; break; } glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, GL_DEPTH_COMPONENT, GL_INT, nullptr); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE_ARB, GL_COMPARE_R_TO_TEXTURE_ARB); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC_ARB, GL_LEQUAL); } float color[] = { 1.0f, 1.0f, 1.0f, 1.0f }; glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, color); glBindTexture(GL_TEXTURE_2D, m_currentTextures[0].id); return result; } void CGLDevice::DestroyTexture(const Texture &texture) { // Unbind the texture if in use anywhere for (int index = 0; index < static_cast( m_currentTextures.size() ); ++index) { if (m_currentTextures[index] == texture) SetTexture(index, Texture()); // set to invalid texture } auto it = m_allTextures.find(texture); if (it != m_allTextures.end()) { glDeleteTextures(1, &texture.id); m_allTextures.erase(it); } } void CGLDevice::DestroyAllTextures() { // Unbind all texture stages for (int index = 0; index < static_cast( m_currentTextures.size() ); ++index) SetTexture(index, Texture()); for (auto it = m_allTextures.begin(); it != m_allTextures.end(); ++it) glDeleteTextures(1, &(*it).id); m_allTextures.clear(); // recreate white texture glActiveTexture(GL_TEXTURE0 + m_remap[0]); glDeleteTextures(1, &m_whiteTexture); glGenTextures(1, &m_whiteTexture); glBindTexture(GL_TEXTURE_2D, m_whiteTexture); int color = 0xFFFFFFFF; glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, &color); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, m_currentTextures[0].id); } int CGLDevice::GetMaxTextureStageCount() { return m_currentTextures.size(); } /** If \a texture is invalid, unbinds the given texture. If valid, binds the texture and enables the given texture stage. The setting is remembered, even if texturing is disabled at the moment. */ void CGLDevice::SetTexture(int index, const Texture &texture) { assert(index >= 0 && index < static_cast( m_currentTextures.size() )); bool same = m_currentTextures[index].id == texture.id; m_currentTextures[index] = texture; // remember the new value if (same) return; // nothing to do glActiveTexture(GL_TEXTURE0 + m_remap[index]); glBindTexture(GL_TEXTURE_2D, texture.id); // Params need to be updated for the new bound texture UpdateTextureParams(index); } void CGLDevice::SetTexture(int index, unsigned int textureId) { assert(index >= 0 && index < static_cast(m_currentTextures.size())); if (m_currentTextures[index].id == textureId) return; // nothing to do m_currentTextures[index].id = textureId; glActiveTexture(GL_TEXTURE0 + m_remap[index]); glBindTexture(GL_TEXTURE_2D, textureId); // Params need to be updated for the new bound texture UpdateTextureParams(index); } void CGLDevice::SetTextureEnabled(int index, bool enabled) { assert(index >= 0 && index < static_cast(m_currentTextures.size())); bool same = m_texturesEnabled[index] == enabled; m_texturesEnabled[index] = enabled; if (same) return; // nothing to do glActiveTexture(GL_TEXTURE0 + m_remap[index]); if (enabled) glEnable(GL_TEXTURE_2D); else glDisable(GL_TEXTURE_2D); } /** Sets the texture parameters for the given texture stage. If the given texture was not set (bound) yet, nothing happens. The settings are remembered, even if texturing is disabled at the moment. */ void CGLDevice::SetTextureStageParams(int index, const TextureStageParams ¶ms) { assert(index >= 0 && index < static_cast(m_currentTextures.size())); // Remember the settings m_textureStageParams[index] = params; UpdateTextureParams(index); } void CGLDevice::SetTextureCoordGeneration(int index, TextureGenerationParams ¶ms) { glActiveTexture(GL_TEXTURE0 + m_remap[index]); for (int i = 0; i < 4; i++) { GLuint texCoordGen = TranslateTextureCoordinateGen(i); GLuint texCoord = TranslateTextureCoordinate(i); switch (params.coords[i].mode) { case TEX_GEN_NONE: glDisable(texCoordGen); break; case TEX_GEN_OBJECT_LINEAR: glEnable(texCoordGen); glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR); glTexGenfv(texCoord, GL_OBJECT_PLANE, params.coords[i].plane); break; case TEX_GEN_EYE_LINEAR: glEnable(texCoordGen); glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGenfv(texCoord, GL_EYE_PLANE, params.coords[i].plane); break; case TEX_GEN_SPHERE_MAP: glEnable(texCoordGen); glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP); break; case TEX_GEN_NORMAL_MAP: glEnable(texCoordGen); glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP); break; case TEX_GEN_REFLECTION_MAP: glEnable(texCoordGen); glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP); break; } } } void CGLDevice::UpdateTextureParams(int index) { assert(index >= 0 && index < static_cast(m_currentTextures.size())); // Don't actually do anything if texture not set if (! m_currentTextures[index].Valid()) return; const TextureStageParams ¶ms = m_textureStageParams[index]; glActiveTexture(GL_TEXTURE0 + m_remap[index]); if (params.wrapS == TEX_WRAP_CLAMP) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); else if (params.wrapS == TEX_WRAP_CLAMP_TO_BORDER) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); else if (params.wrapS == TEX_WRAP_REPEAT) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); else assert(false); if (params.wrapT == TEX_WRAP_CLAMP) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); else if (params.wrapT == TEX_WRAP_CLAMP_TO_BORDER) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); else if (params.wrapT == TEX_WRAP_REPEAT) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); else assert(false); glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, params.factor.Array()); // To save some trouble if ( (params.colorOperation == TEX_MIX_OPER_DEFAULT) && (params.alphaOperation == TEX_MIX_OPER_DEFAULT) ) { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); goto after_tex_operations; } glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); // Only these modes of getting color & alpha are used glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_ALPHA); // Color operation if (params.colorOperation == TEX_MIX_OPER_DEFAULT) { glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE); goto after_tex_color; } else if (params.colorOperation == TEX_MIX_OPER_REPLACE) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_REPLACE); else if (params.colorOperation == TEX_MIX_OPER_MODULATE) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); else if (params.colorOperation == TEX_MIX_OPER_ADD) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_ADD); else if (params.colorOperation == TEX_MIX_OPER_SUBTRACT) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_SUBTRACT); else assert(false); // Color arg1 if (params.colorArg1 == TEX_MIX_ARG_TEXTURE) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE); else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_0) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0); else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_1) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE1); else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_2) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE2); else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_3) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE3); else if (params.colorArg1 == TEX_MIX_ARG_COMPUTED_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS); else if (params.colorArg1 == TEX_MIX_ARG_SRC_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PRIMARY_COLOR); else if (params.colorArg1 == TEX_MIX_ARG_FACTOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_CONSTANT); else assert(false); // Color arg2 if (params.colorArg2 == TEX_MIX_ARG_TEXTURE) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE); else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_0) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE0); else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_1) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE1); else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_2) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE2); else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_3) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE3); else if (params.colorArg2 == TEX_MIX_ARG_COMPUTED_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PREVIOUS); else if (params.colorArg2 == TEX_MIX_ARG_SRC_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PRIMARY_COLOR); else if (params.colorArg2 == TEX_MIX_ARG_FACTOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT); else assert(false); after_tex_color: // Alpha operation if (params.alphaOperation == TEX_MIX_OPER_DEFAULT) { glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE); goto after_tex_operations; } else if (params.alphaOperation == TEX_MIX_OPER_REPLACE) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); else if (params.alphaOperation == TEX_MIX_OPER_MODULATE) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE); else if (params.alphaOperation == TEX_MIX_OPER_ADD) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_ADD); else if (params.alphaOperation == TEX_MIX_OPER_SUBTRACT) glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_SUBTRACT); else assert(false); // Alpha arg1 if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE); else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_0) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE0); else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_1) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE1); else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_2) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE2); else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_3) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE3); else if (params.alphaArg1 == TEX_MIX_ARG_COMPUTED_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS); else if (params.alphaArg1 == TEX_MIX_ARG_SRC_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR); else if (params.alphaArg1 == TEX_MIX_ARG_FACTOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT); else assert(false); // Alpha arg2 if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE); else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_0) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE0); else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_1) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE1); else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_2) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE2); else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_3) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE3); else if (params.alphaArg2 == TEX_MIX_ARG_COMPUTED_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PREVIOUS); else if (params.alphaArg2 == TEX_MIX_ARG_SRC_COLOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PRIMARY_COLOR); else if (params.alphaArg2 == TEX_MIX_ARG_FACTOR) glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_CONSTANT); else assert(false); after_tex_operations: ; } void CGLDevice::EnableShadows() { // already enabled if (m_shadowMapping) return; // shadow map unit glActiveTexture(GL_TEXTURE0 + m_remap[2]); glEnable(GL_TEXTURE_2D); glMatrixMode(GL_TEXTURE); glLoadMatrixf(m_shadowMatrix.Array()); // enable texture coordinate generation glEnable(GL_TEXTURE_GEN_S); glEnable(GL_TEXTURE_GEN_T); glEnable(GL_TEXTURE_GEN_R); glEnable(GL_TEXTURE_GEN_Q); glTexGeni(GL_S, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGeni(GL_T, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGeni(GL_R, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); glTexGeni(GL_Q, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR); float plane1[] = { 1.0f, 0.0f, 0.0f, 0.0f }; float plane2[] = { 0.0f, 1.0f, 0.0f, 0.0f }; float plane3[] = { 0.0f, 0.0f, 1.0f, 0.0f }; float plane4[] = { 0.0f, 0.0f, 0.0f, 1.0f }; glTexGenfv(GL_S, GL_EYE_PLANE, plane1); glTexGenfv(GL_T, GL_EYE_PLANE, plane2); glTexGenfv(GL_R, GL_EYE_PLANE, plane3); glTexGenfv(GL_Q, GL_EYE_PLANE, plane4); // simple shadows if (!m_shadowQuality) { glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); } // quality shadows else { // texture environment settings glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); float half[] = { 0.5f, 0.5f, 0.5f, 1.0f }; glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, half); // color = 0.5 * (1.0 - shadow) // = 0.5 for shadow = 0.0 // = 0.0 for shadow = 1.0 glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_ONE_MINUS_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); // alpha = previous glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); // combine unit glActiveTexture(GL_TEXTURE0 + m_remap[3]); glEnable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, m_whiteTexture); // texture enviromnent settings glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE); // color = (1.0 - previous) * primary color glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_ONE_MINUS_SRC_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PRIMARY_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR); // alpha = primary color glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE); glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR); glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA); } m_shadowMapping = true; } void CGLDevice::DisableShadows() { // already disabled if (!m_shadowMapping) return; glActiveTexture(GL_TEXTURE0 + m_remap[2]); glDisable(GL_TEXTURE_2D); glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_TEXTURE_GEN_S); glDisable(GL_TEXTURE_GEN_T); glDisable(GL_TEXTURE_GEN_R); glDisable(GL_TEXTURE_GEN_Q); // quality shadows if (m_shadowQuality) { glActiveTexture(GL_TEXTURE0 + m_remap[3]); glDisable(GL_TEXTURE_2D); } m_shadowMapping = false; } void CGLDevice::SetTextureStageWrap(int index, TexWrapMode wrapS, TexWrapMode wrapT) { assert(index >= 0 && index < static_cast( m_currentTextures.size() )); // Remember the settings m_textureStageParams[index].wrapS = wrapS; m_textureStageParams[index].wrapT = wrapT; // Don't actually do anything if texture not set if (! m_currentTextures[index].Valid()) return; glActiveTexture(GL_TEXTURE0 + m_remap[index]); if (wrapS == TEX_WRAP_CLAMP) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); else if (wrapS == TEX_WRAP_CLAMP_TO_BORDER) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER); else if (wrapS == TEX_WRAP_REPEAT) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); else assert(false); if (wrapT == TEX_WRAP_CLAMP) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); else if (wrapT == TEX_WRAP_CLAMP_TO_BORDER) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER); else if (wrapT == TEX_WRAP_REPEAT) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); else assert(false); } void CGLDevice::DrawPrimitive(PrimitiveType type, const Vertex *vertices, int vertexCount, Color color) { Vertex* vs = const_cast(vertices); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(Vertex), reinterpret_cast(&vs[0].coord)); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, sizeof(Vertex), reinterpret_cast(&vs[0].normal)); glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), reinterpret_cast(&vs[0].texCoord)); glColor4fv(color.Array()); glDrawArrays(TranslateGfxPrimitive(type), 0, vertexCount); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE0 } void CGLDevice::DrawPrimitive(PrimitiveType type, const VertexTex2 *vertices, int vertexCount, Color color) { VertexTex2* vs = const_cast(vertices); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].coord)); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].normal)); glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].texCoord)); glClientActiveTexture(GL_TEXTURE0 + m_remap[1]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].texCoord2)); glColor4fv(color.Array()); glDrawArrays(TranslateGfxPrimitive(type), 0, vertexCount); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE1 glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } void CGLDevice::DrawPrimitive(PrimitiveType type, const VertexCol *vertices, int vertexCount) { VertexCol* vs = const_cast(vertices); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(VertexCol), reinterpret_cast(&vs[0].coord)); glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4, GL_FLOAT, sizeof(VertexCol), reinterpret_cast(&vs[0].color)); glDrawArrays(TranslateGfxPrimitive(type), 0, vertexCount); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); } void CGLDevice::DrawPrimitives(PrimitiveType type, const Vertex *vertices, int first[], int count[], int drawCount, Color color) { Vertex* vs = const_cast(vertices); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(Vertex), reinterpret_cast(&vs[0].coord)); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, sizeof(Vertex), reinterpret_cast(&vs[0].normal)); glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), reinterpret_cast(&vs[0].texCoord)); glColor4fv(color.Array()); GLenum t = TranslateGfxPrimitive(type); if (m_multiDrawArrays) { glMultiDrawArrays(t, first, count, drawCount); } else { for (int i = 0; i < drawCount; i++) glDrawArrays(t, first[i], count[i]); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE0 } void CGLDevice::DrawPrimitives(PrimitiveType type, const VertexTex2 *vertices, int first[], int count[], int drawCount, Color color) { VertexTex2* vs = const_cast(vertices); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].coord)); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].normal)); glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].texCoord)); glClientActiveTexture(GL_TEXTURE0 + m_remap[1]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast(&vs[0].texCoord2)); glColor4fv(color.Array()); GLenum t = TranslateGfxPrimitive(type); if (m_multiDrawArrays) { glMultiDrawArrays(t, first, count, drawCount); } else { for (int i = 0; i < drawCount; i++) glDrawArrays(t, first[i], count[i]); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE1 glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } void CGLDevice::DrawPrimitives(PrimitiveType type, const VertexCol *vertices, int first[], int count[], int drawCount) { VertexCol* vs = const_cast(vertices); glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(VertexCol), reinterpret_cast(&vs[0].coord)); glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4, GL_FLOAT, sizeof(VertexCol), reinterpret_cast(&vs[0].color)); GLenum t = TranslateGfxPrimitive(type); if (m_multiDrawArrays) { glMultiDrawArrays(t, first, count, drawCount); } else { for (int i = 0; i < drawCount; i++) glDrawArrays(t, first[i], count[i]); } glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); } unsigned int CGLDevice::CreateStaticBuffer(PrimitiveType primitiveType, const Vertex* vertices, int vertexCount) { unsigned int id = 0; if (m_vboAvailable) { id = ++m_lastVboId; VboObjectInfo info; info.primitiveType = primitiveType; info.vertexType = VERTEX_TYPE_NORMAL; info.vertexCount = vertexCount; info.bufferId = 0; if(m_vertexBufferType == VBT_VBO_CORE) { glGenBuffers(1, &info.bufferId); glBindBuffer(GL_ARRAY_BUFFER, info.bufferId); glBufferData(GL_ARRAY_BUFFER, vertexCount * sizeof(Vertex), vertices, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glGenBuffersARB(1, &info.bufferId); glBindBufferARB(GL_ARRAY_BUFFER_ARB, info.bufferId); glBufferDataARB(GL_ARRAY_BUFFER_ARB, vertexCount * sizeof(Vertex), vertices, GL_STATIC_DRAW_ARB); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); } m_vboObjects[id] = info; } else { id = glGenLists(1); glNewList(id, GL_COMPILE); DrawPrimitive(primitiveType, vertices, vertexCount); glEndList(); } return id; } unsigned int CGLDevice::CreateStaticBuffer(PrimitiveType primitiveType, const VertexTex2* vertices, int vertexCount) { unsigned int id = 0; if (m_vboAvailable) { id = ++m_lastVboId; VboObjectInfo info; info.primitiveType = primitiveType; info.vertexType = VERTEX_TYPE_TEX2; info.vertexCount = vertexCount; info.bufferId = 0; if(m_vertexBufferType == VBT_VBO_CORE) { glGenBuffers(1, &info.bufferId); glBindBuffer(GL_ARRAY_BUFFER, info.bufferId); glBufferData(GL_ARRAY_BUFFER, vertexCount * sizeof(VertexTex2), vertices, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glGenBuffersARB(1, &info.bufferId); glBindBufferARB(GL_ARRAY_BUFFER_ARB, info.bufferId); glBufferDataARB(GL_ARRAY_BUFFER_ARB, vertexCount * sizeof(VertexTex2), vertices, GL_STATIC_DRAW_ARB); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); } m_vboObjects[id] = info; } else { id = glGenLists(1); glNewList(id, GL_COMPILE); DrawPrimitive(primitiveType, vertices, vertexCount); glEndList(); } return id; } unsigned int CGLDevice::CreateStaticBuffer(PrimitiveType primitiveType, const VertexCol* vertices, int vertexCount) { unsigned int id = 0; if (m_vboAvailable) { id = ++m_lastVboId; VboObjectInfo info; info.primitiveType = primitiveType; info.vertexType = VERTEX_TYPE_COL; info.vertexCount = vertexCount; info.bufferId = 0; if(m_vertexBufferType == VBT_VBO_CORE) { glGenBuffers(1, &info.bufferId); glBindBuffer(GL_ARRAY_BUFFER, info.bufferId); glBufferData(GL_ARRAY_BUFFER, vertexCount * sizeof(VertexCol), vertices, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glGenBuffersARB(1, &info.bufferId); glBindBufferARB(GL_ARRAY_BUFFER_ARB, info.bufferId); glBufferDataARB(GL_ARRAY_BUFFER_ARB, vertexCount * sizeof(VertexCol), vertices, GL_STATIC_DRAW_ARB); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); } m_vboObjects[id] = info; } else { id = glGenLists(1); glNewList(id, GL_COMPILE); DrawPrimitive(primitiveType, vertices, vertexCount); glEndList(); } return id; } void CGLDevice::UpdateStaticBuffer(unsigned int bufferId, PrimitiveType primitiveType, const Vertex* vertices, int vertexCount) { if (m_vboAvailable) { auto it = m_vboObjects.find(bufferId); if (it == m_vboObjects.end()) return; VboObjectInfo& info = (*it).second; info.primitiveType = primitiveType; info.vertexType = VERTEX_TYPE_NORMAL; info.vertexCount = vertexCount; if(m_vertexBufferType == VBT_VBO_CORE) { glBindBuffer(GL_ARRAY_BUFFER, info.bufferId); glBufferData(GL_ARRAY_BUFFER, vertexCount * sizeof(Vertex), vertices, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glBindBufferARB(GL_ARRAY_BUFFER_ARB, info.bufferId); glBufferDataARB(GL_ARRAY_BUFFER_ARB, vertexCount * sizeof(Vertex), vertices, GL_STATIC_DRAW_ARB); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); } } else { glNewList(bufferId, GL_COMPILE); DrawPrimitive(primitiveType, vertices, vertexCount); glEndList(); } } void CGLDevice::UpdateStaticBuffer(unsigned int bufferId, PrimitiveType primitiveType, const VertexTex2* vertices, int vertexCount) { if (m_vboAvailable) { auto it = m_vboObjects.find(bufferId); if (it == m_vboObjects.end()) return; VboObjectInfo& info = (*it).second; info.primitiveType = primitiveType; info.vertexType = VERTEX_TYPE_TEX2; info.vertexCount = vertexCount; if(m_vertexBufferType == VBT_VBO_CORE) { glBindBuffer(GL_ARRAY_BUFFER, info.bufferId); glBufferData(GL_ARRAY_BUFFER, vertexCount * sizeof(VertexTex2), vertices, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glBindBufferARB(GL_ARRAY_BUFFER_ARB, info.bufferId); glBufferDataARB(GL_ARRAY_BUFFER_ARB, vertexCount * sizeof(VertexTex2), vertices, GL_STATIC_DRAW_ARB); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); } } else { glNewList(bufferId, GL_COMPILE); DrawPrimitive(primitiveType, vertices, vertexCount); glEndList(); } } void CGLDevice::UpdateStaticBuffer(unsigned int bufferId, PrimitiveType primitiveType, const VertexCol* vertices, int vertexCount) { if (m_vboAvailable) { auto it = m_vboObjects.find(bufferId); if (it == m_vboObjects.end()) return; VboObjectInfo& info = (*it).second; info.primitiveType = primitiveType; info.vertexType = VERTEX_TYPE_COL; info.vertexCount = vertexCount; if(m_vertexBufferType == VBT_VBO_CORE) { glBindBuffer(GL_ARRAY_BUFFER, info.bufferId); glBufferData(GL_ARRAY_BUFFER, vertexCount * sizeof(VertexCol), vertices, GL_STATIC_DRAW); glBindBuffer(GL_ARRAY_BUFFER, 0); } else { glBindBufferARB(GL_ARRAY_BUFFER_ARB, info.bufferId); glBufferDataARB(GL_ARRAY_BUFFER_ARB, vertexCount * sizeof(VertexCol), vertices, GL_STATIC_DRAW_ARB); glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); } } else { glNewList(bufferId, GL_COMPILE); DrawPrimitive(primitiveType, vertices, vertexCount); glEndList(); } } void CGLDevice::DrawStaticBuffer(unsigned int bufferId) { if (m_vboAvailable) { auto it = m_vboObjects.find(bufferId); if (it == m_vboObjects.end()) return; glEnable(GL_VERTEX_ARRAY); if(m_vertexBufferType == VBT_VBO_CORE) glBindBuffer(GL_ARRAY_BUFFER, (*it).second.bufferId); else glBindBufferARB(GL_ARRAY_BUFFER_ARB, (*it).second.bufferId); if ((*it).second.vertexType == VERTEX_TYPE_NORMAL) { glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(Vertex), static_cast(nullptr) + offsetof(Vertex, coord)); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, sizeof(Vertex), static_cast(nullptr) + offsetof(Vertex, normal)); glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), static_cast(nullptr) + offsetof(Vertex, texCoord)); } else if ((*it).second.vertexType == VERTEX_TYPE_TEX2) { glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(VertexTex2), static_cast(nullptr) + offsetof(VertexTex2, coord)); glEnableClientState(GL_NORMAL_ARRAY); glNormalPointer(GL_FLOAT, sizeof(VertexTex2), static_cast(nullptr) + offsetof(VertexTex2, normal)); glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), static_cast(nullptr) + offsetof(VertexTex2, texCoord)); glClientActiveTexture(GL_TEXTURE0 + m_remap[1]); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), static_cast(nullptr) + offsetof(VertexTex2, texCoord2)); } else if ((*it).second.vertexType == VERTEX_TYPE_COL) { glEnableClientState(GL_VERTEX_ARRAY); glVertexPointer(3, GL_FLOAT, sizeof(VertexCol), static_cast(nullptr) + offsetof(VertexCol, coord)); glEnableClientState(GL_COLOR_ARRAY); glColorPointer(4, GL_FLOAT, sizeof(VertexCol), static_cast(nullptr) + offsetof(VertexCol, color)); } GLenum mode = TranslateGfxPrimitive((*it).second.primitiveType); glDrawArrays(mode, 0, (*it).second.vertexCount); if ((*it).second.vertexType == VERTEX_TYPE_NORMAL) { glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE0 } else if ((*it).second.vertexType == VERTEX_TYPE_TEX2) { glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_NORMAL_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE1 glClientActiveTexture(GL_TEXTURE0 + m_remap[0]); glDisableClientState(GL_TEXTURE_COORD_ARRAY); } else if ((*it).second.vertexType == VERTEX_TYPE_COL) { glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_COLOR_ARRAY); } if(m_vertexBufferType == VBT_VBO_CORE) glBindBuffer(GL_ARRAY_BUFFER, 0); else glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); glDisable(GL_VERTEX_ARRAY); } else { glCallList(bufferId); } } void CGLDevice::DestroyStaticBuffer(unsigned int bufferId) { if (m_vboAvailable) { auto it = m_vboObjects.find(bufferId); if (it == m_vboObjects.end()) return; if(m_vertexBufferType == VBT_VBO_CORE) glDeleteBuffers(1, &(*it).second.bufferId); else glDeleteBuffersARB(1, &(*it).second.bufferId); m_vboObjects.erase(it); } else { glDeleteLists(bufferId, 1); } } /* Based on libwine's implementation */ int CGLDevice::ComputeSphereVisibility(const Math::Vector ¢er, float radius) { if (m_combinedMatrixOutdated) { m_combinedMatrix = Math::MultiplyMatrices(m_projectionMat, m_modelviewMat); m_combinedMatrixOutdated = false; } Math::Matrix &m = m_combinedMatrix; Math::Vector vec[6]; float originPlane[6]; // Left plane vec[0].x = m.Get(4, 1) + m.Get(1, 1); vec[0].y = m.Get(4, 2) + m.Get(1, 2); vec[0].z = m.Get(4, 3) + m.Get(1, 3); float l1 = vec[0].Length(); vec[0].Normalize(); originPlane[0] = (m.Get(4, 4) + m.Get(1, 4)) / l1; // Right plane vec[1].x = m.Get(4, 1) - m.Get(1, 1); vec[1].y = m.Get(4, 2) - m.Get(1, 2); vec[1].z = m.Get(4, 3) - m.Get(1, 3); float l2 = vec[1].Length(); vec[1].Normalize(); originPlane[1] = (m.Get(4, 4) - m.Get(1, 4)) / l2; // Bottom plane vec[2].x = m.Get(4, 1) + m.Get(2, 1); vec[2].y = m.Get(4, 2) + m.Get(2, 2); vec[2].z = m.Get(4, 3) + m.Get(2, 3); float l3 = vec[2].Length(); vec[2].Normalize(); originPlane[2] = (m.Get(4, 4) + m.Get(2, 4)) / l3; // Top plane vec[3].x = m.Get(4, 1) - m.Get(2, 1); vec[3].y = m.Get(4, 2) - m.Get(2, 2); vec[3].z = m.Get(4, 3) - m.Get(2, 3); float l4 = vec[3].Length(); vec[3].Normalize(); originPlane[3] = (m.Get(4, 4) - m.Get(2, 4)) / l4; // Front plane vec[4].x = m.Get(4, 1) + m.Get(3, 1); vec[4].y = m.Get(4, 2) + m.Get(3, 2); vec[4].z = m.Get(4, 3) + m.Get(3, 3); float l5 = vec[4].Length(); vec[4].Normalize(); originPlane[4] = (m.Get(4, 4) + m.Get(3, 4)) / l5; // Back plane vec[5].x = m.Get(4, 1) - m.Get(3, 1); vec[5].y = m.Get(4, 2) - m.Get(3, 2); vec[5].z = m.Get(4, 3) - m.Get(3, 3); float l6 = vec[5].Length(); vec[5].Normalize(); originPlane[5] = (m.Get(4, 4) - m.Get(3, 4)) / l6; int result = 0; if (InPlane(vec[0], originPlane[0], center, radius)) result |= FRUSTUM_PLANE_LEFT; if (InPlane(vec[1], originPlane[1], center, radius)) result |= FRUSTUM_PLANE_RIGHT; if (InPlane(vec[2], originPlane[2], center, radius)) result |= FRUSTUM_PLANE_BOTTOM; if (InPlane(vec[3], originPlane[3], center, radius)) result |= FRUSTUM_PLANE_TOP; if (InPlane(vec[4], originPlane[4], center, radius)) result |= FRUSTUM_PLANE_FRONT; if (InPlane(vec[5], originPlane[5], center, radius)) result |= FRUSTUM_PLANE_BACK; return result; } void CGLDevice::SetViewport(int x, int y, int width, int height) { glViewport(x, y, width, height); } void CGLDevice::SetRenderState(RenderState state, bool enabled) { if (state == RENDER_STATE_DEPTH_WRITE) { glDepthMask(enabled ? GL_TRUE : GL_FALSE); return; } else if (state == RENDER_STATE_LIGHTING) { m_lighting = enabled; if (enabled) glEnable(GL_LIGHTING); else glDisable(GL_LIGHTING); if (enabled) { UpdateLightPositions(); } return; } else if (state == RENDER_STATE_SHADOW_MAPPING) { if (enabled) EnableShadows(); else DisableShadows(); return; } GLenum flag = 0; switch (state) { case RENDER_STATE_BLENDING: flag = GL_BLEND; break; case RENDER_STATE_FOG: flag = GL_FOG; break; case RENDER_STATE_DEPTH_TEST: flag = GL_DEPTH_TEST; break; case RENDER_STATE_ALPHA_TEST: flag = GL_ALPHA_TEST; break; case RENDER_STATE_CULLING: flag = GL_CULL_FACE; break; case RENDER_STATE_DEPTH_BIAS: flag = GL_POLYGON_OFFSET_FILL; break; default: assert(false); break; } if (enabled) glEnable(flag); else glDisable(flag); } void CGLDevice::SetColorMask(bool red, bool green, bool blue, bool alpha) { glColorMask(red, green, blue, alpha); } void CGLDevice::SetDepthTestFunc(CompFunc func) { glDepthFunc(TranslateGfxCompFunc(func)); } void CGLDevice::SetDepthBias(float factor, float units) { glPolygonOffset(factor, units); } void CGLDevice::SetAlphaTestFunc(CompFunc func, float refValue) { glAlphaFunc(TranslateGfxCompFunc(func), refValue); } void CGLDevice::SetBlendFunc(BlendFunc srcBlend, BlendFunc dstBlend) { glBlendFunc(TranslateGfxBlendFunc(srcBlend), TranslateGfxBlendFunc(dstBlend)); } void CGLDevice::SetClearColor(const Color &color) { glClearColor(color.r, color.g, color.b, color.a); } void CGLDevice::SetGlobalAmbient(const Color &color) { glLightModelfv(GL_LIGHT_MODEL_AMBIENT, color.Array()); } void CGLDevice::SetFogParams(FogMode mode, const Color &color, float start, float end, float density) { if (mode == FOG_LINEAR) glFogi(GL_FOG_MODE, GL_LINEAR); else if (mode == FOG_EXP) glFogi(GL_FOG_MODE, GL_EXP); else if (mode == FOG_EXP2) glFogi(GL_FOG_MODE, GL_EXP2); else assert(false); glFogf(GL_FOG_START, start); glFogf(GL_FOG_END, end); glFogf(GL_FOG_DENSITY, density); glFogfv(GL_FOG_COLOR, color.Array()); } void CGLDevice::SetCullMode(CullMode mode) { // Cull clockwise back faces, so front face is the opposite // (assuming GL_CULL_FACE is GL_BACK) if (mode == CULL_CW ) glFrontFace(GL_CCW); else if (mode == CULL_CCW) glFrontFace(GL_CW); else assert(false); } void CGLDevice::SetShadeModel(ShadeModel model) { if (model == SHADE_FLAT) glShadeModel(GL_FLAT); else if (model == SHADE_SMOOTH) glShadeModel(GL_SMOOTH); else assert(false); } void CGLDevice::SetShadowColor(float value) { // doesn't do anything because it can't } void CGLDevice::SetFillMode(FillMode mode) { if (mode == FILL_POINT) glPolygonMode(GL_FRONT_AND_BACK, GL_POINT); else if (mode == FILL_LINES) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); else if (mode == FILL_POLY) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); else assert(false); } void CGLDevice::CopyFramebufferToTexture(Texture& texture, int xOffset, int yOffset, int x, int y, int width, int height) { if (texture.id == 0) return; // Use & enable 1st texture stage glActiveTexture(GL_TEXTURE0 + m_remap[0]); glBindTexture(GL_TEXTURE_2D, texture.id); glCopyTexSubImage2D(GL_TEXTURE_2D, 0, xOffset, yOffset, x, y, width, height); // Restore previous texture glBindTexture(GL_TEXTURE_2D, m_currentTextures[0].id); } std::unique_ptr CGLDevice::GetFrameBufferPixels() const { return GetGLFrameBufferPixels(m_config.size); } CFramebuffer* CGLDevice::GetFramebuffer(std::string name) { auto it = m_framebuffers.find(name); if (it == m_framebuffers.end()) return nullptr; return it->second.get(); } CFramebuffer* CGLDevice::CreateFramebuffer(std::string name, const FramebufferParams& params) { // existing framebuffer was found if (m_framebuffers.find(name) != m_framebuffers.end()) { return nullptr; } std::unique_ptr framebuffer; if (m_framebufferSupport == FBS_ARB) framebuffer = MakeUnique(params); else if (m_framebufferSupport == FBS_EXT) framebuffer = MakeUnique(params); else return nullptr; if (!framebuffer->Create()) return nullptr; CFramebuffer* framebufferPtr = framebuffer.get(); m_framebuffers[name] = std::move(framebuffer); return framebufferPtr; } void CGLDevice::DeleteFramebuffer(std::string name) { // can't delete default framebuffer if (name == "default") return; auto it = m_framebuffers.find(name); if (it != m_framebuffers.end()) { it->second->Destroy(); m_framebuffers.erase(it); } } bool CGLDevice::IsAnisotropySupported() { return m_anisotropyAvailable; } int CGLDevice::GetMaxAnisotropyLevel() { return m_maxAnisotropy; } int CGLDevice::GetMaxSamples() { return m_maxSamples; } bool CGLDevice::IsShadowMappingSupported() { return m_shadowMappingSupport != SMS_NONE; } int CGLDevice::GetMaxTextureSize() { int value; glGetIntegerv(GL_MAX_TEXTURE_SIZE, &value); return value; } bool CGLDevice::IsFramebufferSupported() { return m_framebufferSupport != FBS_NONE; } } // namespace Gfx