colobot/src/graphics/opengl/gl21device.cpp

1796 lines
58 KiB
C++
Raw Normal View History

2015-05-27 20:12:02 +00:00
/*
* This file is part of the Colobot: Gold Edition source code
* Copyright (C) 2001-2014, Daniel Roux, EPSITEC SA & TerranovaTeam
* http://epsitec.ch; http://colobot.info; http://github.com/colobot
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see http://gnu.org/licenses
*/
#include "graphics/opengl/gl21device.h"
#include "graphics/engine/engine.h"
#include "common/config.h"
#include "common/image.h"
#include "common/logger.h"
#include "common/profile.h"
#include "math/geometry.h"
#include <SDL.h>
#include <physfs.h>
#include <cassert>
// Graphics module namespace
namespace Gfx {
CGL21Device::CGL21Device(const GLDeviceConfig &config)
{
m_config = config;
m_lighting = false;
m_lastVboId = 0;
m_anisotropyAvailable = false;
m_maxAnisotropy = 1;
m_glMajor = 1;
m_glMinor = 1;
m_framebuffer = 0;
m_colorBuffer = 0;
m_depthBuffer = 0;
m_offscreenRenderingEnabled = false;
m_perPixelLighting = false;
}
CGL21Device::~CGL21Device()
{
}
void CGL21Device::DebugHook()
{
/* This function is only called here, so it can be used
* as a breakpoint when debugging using gDEBugger */
glColor3i(0, 0, 0);
}
void CGL21Device::DebugLights()
{
Gfx::ColorHSV color(0.0, 1.0, 1.0);
glLineWidth(3.0f);
glDisable(GL_LIGHTING);
glDepthMask(GL_FALSE);
glDisable(GL_BLEND);
Math::Matrix saveWorldMat = m_worldMat;
m_worldMat.LoadIdentity();
SetTransform(TRANSFORM_WORLD, m_worldMat);
for (int i = 0; i < static_cast<int>( m_lights.size() ); ++i)
{
color.h = static_cast<float>(i) / static_cast<float>(m_lights.size());
if (m_lightsEnabled[i])
{
const Light& l = m_lights[i];
if (l.type == LIGHT_DIRECTIONAL)
{
Gfx::VertexCol v[2];
v[0].coord = -Math::Normalize(l.direction) * 100.0f + Math::Vector(0.0f, 0.0f, 1.0f) * i;
v[0].color = HSV2RGB(color);
v[1].coord = Math::Normalize(l.direction) * 100.0f + Math::Vector(0.0f, 0.0f, 1.0f) * i;
v[1].color = HSV2RGB(color);
while (v[0].coord.y < 60.0f && v[0].coord.y < 60.0f)
{
v[0].coord.y += 10.0f;
v[1].coord.y += 10.0f;
}
DrawPrimitive(PRIMITIVE_LINES, v, 2);
v[0].coord = v[1].coord + Math::Normalize(v[0].coord - v[1].coord) * 50.0f;
glLineWidth(10.0f);
DrawPrimitive(PRIMITIVE_LINES, v, 2);
glLineWidth(3.0f);
}
else if (l.type == LIGHT_POINT)
{
Gfx::VertexCol v[8];
for (int i = 0; i < 8; ++i)
v[i].color = HSV2RGB(color);
v[0].coord = l.position + Math::Vector(-1.0f, -1.0f, -1.0f) * 4.0f;
v[1].coord = l.position + Math::Vector( 1.0f, -1.0f, -1.0f) * 4.0f;
v[2].coord = l.position + Math::Vector( 1.0f, 1.0f, -1.0f) * 4.0f;
v[3].coord = l.position + Math::Vector(-1.0f, 1.0f, -1.0f) * 4.0f;
v[4].coord = l.position + Math::Vector(-1.0f, -1.0f, -1.0f) * 4.0f;
DrawPrimitive(PRIMITIVE_LINE_STRIP, v, 5);
v[0].coord = l.position + Math::Vector(-1.0f, -1.0f, 1.0f) * 4.0f;
v[1].coord = l.position + Math::Vector( 1.0f, -1.0f, 1.0f) * 4.0f;
v[2].coord = l.position + Math::Vector( 1.0f, 1.0f, 1.0f) * 4.0f;
v[3].coord = l.position + Math::Vector(-1.0f, 1.0f, 1.0f) * 4.0f;
v[4].coord = l.position + Math::Vector(-1.0f, -1.0f, 1.0f) * 4.0f;
DrawPrimitive(PRIMITIVE_LINE_STRIP, v, 5);
v[0].coord = l.position + Math::Vector(-1.0f, -1.0f, -1.0f) * 4.0f;
v[1].coord = l.position + Math::Vector(-1.0f, -1.0f, 1.0f) * 4.0f;
v[2].coord = l.position + Math::Vector( 1.0f, -1.0f, -1.0f) * 4.0f;
v[3].coord = l.position + Math::Vector( 1.0f, -1.0f, 1.0f) * 4.0f;
v[4].coord = l.position + Math::Vector( 1.0f, 1.0f, -1.0f) * 4.0f;
v[5].coord = l.position + Math::Vector( 1.0f, 1.0f, 1.0f) * 4.0f;
v[6].coord = l.position + Math::Vector(-1.0f, 1.0f, -1.0f) * 4.0f;
v[7].coord = l.position + Math::Vector(-1.0f, 1.0f, 1.0f) * 4.0f;
DrawPrimitive(PRIMITIVE_LINES, v, 8);
}
else if (l.type == LIGHT_SPOT)
{
Gfx::VertexCol v[5];
for (int i = 0; i < 5; ++i)
v[i].color = HSV2RGB(color);
v[0].coord = l.position + Math::Vector(-1.0f, 0.0f, -1.0f) * 4.0f;
v[1].coord = l.position + Math::Vector( 1.0f, 0.0f, -1.0f) * 4.0f;
v[2].coord = l.position + Math::Vector( 1.0f, 0.0f, 1.0f) * 4.0f;
v[3].coord = l.position + Math::Vector(-1.0f, 0.0f, 1.0f) * 4.0f;
v[4].coord = l.position + Math::Vector(-1.0f, 0.0f, -1.0f) * 4.0f;
DrawPrimitive(PRIMITIVE_LINE_STRIP, v, 5);
v[0].coord = l.position;
v[1].coord = l.position + Math::Normalize(l.direction) * 100.0f;
glEnable(GL_LINE_STIPPLE);
glLineStipple(3.0, 0xFF);
DrawPrimitive(PRIMITIVE_LINES, v, 2);
glDisable(GL_LINE_STIPPLE);
}
}
}
glLineWidth(1.0f);
glEnable(GL_LIGHTING);
glDepthMask(GL_TRUE);
glEnable(GL_BLEND);
SetTransform(TRANSFORM_WORLD, saveWorldMat);
m_worldMat = saveWorldMat;
}
bool CGL21Device::Create()
{
GetLogger()->Info("Creating CDevice - OpenGL 2.1\n");
/*static*/ bool glewInited = false;
if (!glewInited)
{
glewInited = true;
glewExperimental = GL_TRUE;
if (glewInit() != GLEW_OK)
{
GetLogger()->Error("GLEW initialization failed\n");
return false;
}
// Extract OpenGL version
const char *version = reinterpret_cast<const char*>(glGetString(GL_VERSION));
sscanf(version, "%d.%d", &m_glMajor, &m_glMinor);
if (m_glMajor < 2)
{
GetLogger()->Error("Your hardware does not support OpenGL 2.0 or 2.1.");
return false;
}
2015-05-27 20:12:02 +00:00
GetLogger()->Info("OpenGL %d.%d\n", m_glMajor, m_glMinor);
m_framebufferObject = glewIsSupported("GL_EXT_framebuffer_object");
if (m_framebufferObject)
{
glGetIntegerv(GL_MAX_RENDERBUFFER_SIZE_EXT, &m_maxRenderbufferSize);
GetLogger()->Info("Offscreen rendering available\n");
GetLogger()->Info("Maximum renderbuffer size: %d\n", m_maxRenderbufferSize);
}
// Detect support of anisotropic filtering
m_anisotropyAvailable = glewIsSupported("GL_EXT_texture_filter_anisotropic");
if(m_anisotropyAvailable)
{
// Obtain maximum anisotropy level available
float level;
glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &level);
m_maxAnisotropy = static_cast<int>(level);
GetLogger()->Info("Anisotropic filtering available\n");
GetLogger()->Info("Maximum anisotropy: %d\n", m_maxAnisotropy);
}
else
{
GetLogger()->Info("Anisotropic filtering not available\n");
}
}
// This is mostly done in all modern hardware by default
// DirectX doesn't even allow the option to turn off perspective correction anymore
// So turn it on permanently
glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
// Set just to be sure
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glViewport(0, 0, m_config.size.x, m_config.size.y);
int numLights = 0;
glGetIntegerv(GL_MAX_LIGHTS, &numLights);
m_lights = std::vector<Light>(numLights, Light());
m_lightsEnabled = std::vector<bool> (numLights, false);
int maxTextures = 0;
glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS, &maxTextures);
GetLogger()->Info("Maximum texture image units: %d\n", maxTextures);
2015-05-27 20:12:02 +00:00
m_currentTextures = std::vector<Texture> (maxTextures, Texture());
m_texturesEnabled = std::vector<bool> (maxTextures, false);
m_textureStageParams = std::vector<TextureStageParams>(maxTextures, TextureStageParams());
int value;
if (CProfile::GetInstance().GetIntProperty("Setup", "PerPixelLighting", value))
{
m_perPixelLighting = value > 0;
}
if (m_perPixelLighting)
CLogger::GetInstance().Info("Using per-pixel lighting\n");
else
CLogger::GetInstance().Info("Using per-vertex lighting\n");
2015-06-01 15:21:10 +00:00
// Create normal shader program
GLint shaders[2];
char filename[128];
if (m_perPixelLighting)
sprintf(filename, "shaders/vertex_shader_21_perpixel.glsl");
else
sprintf(filename, "shaders/vertex_shader_21_pervertex.glsl");
2015-06-01 15:21:10 +00:00
shaders[0] = LoadShader(GL_VERTEX_SHADER, filename);
if (shaders[0] == 0) return false;
2015-05-27 20:12:02 +00:00
if (m_perPixelLighting)
sprintf(filename, "shaders/fragment_shader_21_perpixel.glsl");
else
sprintf(filename, "shaders/fragment_shader_21_pervertex.glsl");
2015-06-01 15:21:10 +00:00
shaders[1] = LoadShader(GL_FRAGMENT_SHADER, filename);
if (shaders[1] == 0) return false;
2015-05-27 20:12:02 +00:00
2015-06-01 15:21:10 +00:00
m_program = LinkProgram(2, shaders);
if (m_program == 0) return false;
2015-05-27 20:12:02 +00:00
2015-06-01 15:21:10 +00:00
glDeleteShader(shaders[0]);
glDeleteShader(shaders[1]);
2015-05-27 20:12:02 +00:00
// Obtain uniform locations
2015-06-01 15:21:10 +00:00
uni_ProjectionMatrix = glGetUniformLocation(m_program, "uni_ProjectionMatrix");
uni_ViewMatrix = glGetUniformLocation(m_program, "uni_ViewMatrix");
uni_ModelMatrix = glGetUniformLocation(m_program, "uni_ModelMatrix");
uni_NormalMatrix = glGetUniformLocation(m_program, "uni_NormalMatrix");
uni_ShadowMatrix = glGetUniformLocation(m_program, "uni_ShadowMatrix");
2015-05-27 20:12:02 +00:00
2015-06-01 15:21:10 +00:00
uni_PrimaryTexture = glGetUniformLocation(m_program, "uni_PrimaryTexture");
uni_SecondaryTexture = glGetUniformLocation(m_program, "uni_SecondaryTexture");
uni_ShadowTexture = glGetUniformLocation(m_program, "uni_ShadowTexture");
2015-05-27 20:12:02 +00:00
for (int i = 0; i < 3; i++)
{
char name[64];
sprintf(name, "uni_TextureEnabled[%d]", i);
2015-06-01 15:21:10 +00:00
uni_TextureEnabled[i] = glGetUniformLocation(m_program, name);
2015-05-27 20:12:02 +00:00
}
2015-06-01 15:21:10 +00:00
uni_AlphaTestEnabled = glGetUniformLocation(m_program, "uni_AlphaTestEnabled");
uni_AlphaReference = glGetUniformLocation(m_program, "uni_AlphaReference");
2015-05-27 20:12:02 +00:00
2015-06-01 15:21:10 +00:00
uni_FogEnabled = glGetUniformLocation(m_program, "uni_FogEnabled");
uni_FogRange = glGetUniformLocation(m_program, "uni_FogRange");
uni_FogColor = glGetUniformLocation(m_program, "uni_FogColor");
2015-05-27 20:12:02 +00:00
2015-06-01 15:21:10 +00:00
uni_ShadowColor = glGetUniformLocation(m_program, "uni_ShadowColor");
uni_LightingEnabled = glGetUniformLocation(m_program, "uni_LightingEnabled");
2015-05-27 20:12:02 +00:00
for (int i = 0; i < 8; i++)
{
char name[64];
sprintf(name, "uni_LightEnabled[%d]", i);
2015-06-01 15:21:10 +00:00
uni_LightEnabled[i] = glGetUniformLocation(m_program, name);
2015-05-27 20:12:02 +00:00
}
// Set default uniform values
Math::Matrix matrix;
matrix.LoadIdentity();
2015-06-01 15:21:10 +00:00
glUseProgram(m_program);
2015-05-27 20:12:02 +00:00
glUniformMatrix4fv(uni_ProjectionMatrix, 1, GL_FALSE, matrix.Array());
glUniformMatrix4fv(uni_ViewMatrix, 1, GL_FALSE, matrix.Array());
glUniformMatrix4fv(uni_ModelMatrix, 1, GL_FALSE, matrix.Array());
glUniformMatrix4fv(uni_NormalMatrix, 1, GL_FALSE, matrix.Array());
glUniformMatrix4fv(uni_ShadowMatrix, 1, GL_FALSE, matrix.Array());
glUniform1i(uni_PrimaryTexture, 0);
glUniform1i(uni_SecondaryTexture, 1);
glUniform1i(uni_ShadowTexture, 2);
for (int i = 0; i < 3; i++)
glUniform1i(uni_TextureEnabled[i], 0);
glUniform1i(uni_AlphaTestEnabled, 0);
glUniform1f(uni_AlphaReference, 0.5f);
glUniform1i(uni_FogEnabled, 0);
glUniform2f(uni_FogRange, 100.0f, 200.0f);
glUniform4f(uni_FogColor, 0.8f, 0.8f, 0.8f, 1.0f);
glUniform1i(uni_LightingEnabled, 0);
for (int i = 0; i < 8; i++)
glUniform1i(uni_LightEnabled[i], 0);
GetLogger()->Info("CDevice created successfully\n");
return true;
}
void CGL21Device::Destroy()
{
// Delete the remaining textures
// Should not be strictly necessary, but just in case
glUseProgram(0);
2015-06-01 15:21:10 +00:00
glDeleteProgram(m_program);
2015-05-27 20:12:02 +00:00
DestroyAllTextures();
m_lights.clear();
m_lightsEnabled.clear();
m_currentTextures.clear();
m_texturesEnabled.clear();
m_textureStageParams.clear();
}
void CGL21Device::ConfigChanged(const GLDeviceConfig& newConfig)
{
m_config = newConfig;
// Reset state
m_lighting = false;
Destroy();
Create();
}
void CGL21Device::BeginScene()
{
Clear();
}
void CGL21Device::EndScene()
{
}
void CGL21Device::Clear()
{
glDepthMask(GL_TRUE);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
void CGL21Device::SetTransform(TransformType type, const Math::Matrix &matrix)
{
if (type == TRANSFORM_WORLD)
{
m_worldMat = matrix;
2015-06-01 15:21:10 +00:00
2015-05-27 20:12:02 +00:00
glUniformMatrix4fv(uni_ModelMatrix, 1, GL_FALSE, m_worldMat.Array());
// normal transform
Math::Matrix normalMat = matrix;
normalMat = normalMat.Inverse();
glUniformMatrix4fv(uni_NormalMatrix, 1, GL_TRUE, normalMat.Array());
}
else if (type == TRANSFORM_VIEW)
{
m_viewMat = matrix;
Math::Matrix scale;
Math::LoadScaleMatrix(scale, Math::Vector(1.0f, 1.0f, -1.0f));
Math::Matrix temp = Math::MultiplyMatrices(scale, matrix);
2015-06-01 15:21:10 +00:00
2015-05-27 20:12:02 +00:00
glUniformMatrix4fv(uni_ViewMatrix, 1, GL_FALSE, temp.Array());
}
else if (type == TRANSFORM_PROJECTION)
{
m_projectionMat = matrix;
2015-06-01 15:21:10 +00:00
2015-05-27 20:12:02 +00:00
glUniformMatrix4fv(uni_ProjectionMatrix, 1, GL_FALSE, m_projectionMat.Array());
}
else if (type == TRANSFORM_SHADOW)
{
Math::Matrix temp = matrix;
glUniformMatrix4fv(uni_ShadowMatrix, 1, GL_FALSE, temp.Array());
}
else
{
assert(false);
}
}
void CGL21Device::SetMaterial(const Material &material)
{
m_material = material;
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, m_material.ambient.Array());
glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, m_material.diffuse.Array());
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, m_material.specular.Array());
}
int CGL21Device::GetMaxLightCount()
{
return m_lights.size();
}
void CGL21Device::SetLight(int index, const Light &light)
{
assert(index >= 0);
assert(index < static_cast<int>( m_lights.size() ));
m_lights[index] = light;
// Indexing from GL_LIGHT0 should always work
glLightfv(GL_LIGHT0 + index, GL_AMBIENT, const_cast<GLfloat*>(light.ambient.Array()));
glLightfv(GL_LIGHT0 + index, GL_DIFFUSE, const_cast<GLfloat*>(light.diffuse.Array()));
glLightfv(GL_LIGHT0 + index, GL_SPECULAR, const_cast<GLfloat*>(light.specular.Array()));
glLightf(GL_LIGHT0 + index, GL_CONSTANT_ATTENUATION, light.attenuation0);
glLightf(GL_LIGHT0 + index, GL_LINEAR_ATTENUATION, light.attenuation1);
glLightf(GL_LIGHT0 + index, GL_QUADRATIC_ATTENUATION, light.attenuation2);
if (light.type == LIGHT_SPOT)
{
glLightf(GL_LIGHT0 + index, GL_SPOT_CUTOFF, light.spotAngle * Math::RAD_TO_DEG);
glLightf(GL_LIGHT0 + index, GL_SPOT_EXPONENT, light.spotIntensity);
}
else
{
glLightf(GL_LIGHT0 + index, GL_SPOT_CUTOFF, 180.0f);
}
UpdateLightPosition(index);
}
void CGL21Device::UpdateLightPosition(int index)
{
assert(index >= 0);
assert(index < static_cast<int>( m_lights.size() ));
glMatrixMode(GL_MODELVIEW);
glPushMatrix();
glLoadIdentity();
//glScalef(1.0f, 1.0f, -1.0f);
if (m_lights[index].type == LIGHT_SPOT)
{
GLfloat direction[4] = { -m_lights[index].direction.x, -m_lights[index].direction.y, -m_lights[index].direction.z, 1.0f };
glLightfv(GL_LIGHT0 + index, GL_SPOT_DIRECTION, direction);
}
if (m_lights[index].type == LIGHT_DIRECTIONAL)
{
GLfloat position[4] = { -m_lights[index].direction.x, -m_lights[index].direction.y, -m_lights[index].direction.z, 0.0f };
glLightfv(GL_LIGHT0 + index, GL_POSITION, position);
}
else
{
GLfloat position[4] = { m_lights[index].position.x, m_lights[index].position.y, m_lights[index].position.z, 1.0f };
glLightfv(GL_LIGHT0 + index, GL_POSITION, position);
}
glPopMatrix();
}
void CGL21Device::SetLightEnabled(int index, bool enabled)
{
assert(index >= 0);
assert(index < static_cast<int>( m_lights.size() ));
m_lightsEnabled[index] = enabled;
glUniform1i(uni_LightEnabled[index], enabled ? 1 : 0);
}
/** If image is invalid, returns invalid texture.
Otherwise, returns pointer to new Texture struct.
This struct must not be deleted in other way than through DeleteTexture() */
Texture CGL21Device::CreateTexture(CImage *image, const TextureCreateParams &params)
{
ImageData *data = image->GetData();
if (data == nullptr)
{
GetLogger()->Error("Invalid texture data\n");
return Texture(); // invalid texture
}
Math::IntPoint originalSize = image->GetSize();
if (params.padToNearestPowerOfTwo)
image->PadToNearestPowerOfTwo();
Texture tex = CreateTexture(data, params);
tex.originalSize = originalSize;
return tex;
}
Texture CGL21Device::CreateTexture(ImageData *data, const TextureCreateParams &params)
{
Texture result;
result.size.x = data->surface->w;
result.size.y = data->surface->h;
if (!Math::IsPowerOfTwo(result.size.x) || !Math::IsPowerOfTwo(result.size.y))
GetLogger()->Warn("Creating non-power-of-2 texture (%dx%d)!\n", result.size.x, result.size.y);
result.originalSize = result.size;
glActiveTexture(GL_TEXTURE0);
glEnable(GL_TEXTURE_2D);
glGenTextures(1, &result.id);
glBindTexture(GL_TEXTURE_2D, result.id);
// Set texture parameters
GLint minF = GL_NEAREST, magF = GL_NEAREST;
int mipmapLevel = 1;
switch (params.filter)
{
case TEX_FILTER_NEAREST:
minF = GL_NEAREST;
magF = GL_NEAREST;
break;
case TEX_FILTER_BILINEAR:
minF = GL_LINEAR;
magF = GL_LINEAR;
break;
case TEX_FILTER_TRILINEAR:
minF = GL_LINEAR_MIPMAP_LINEAR;
magF = GL_LINEAR;
mipmapLevel = CEngine::GetInstance().GetTextureMipmapLevel();
break;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minF);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magF);
// Set mipmap level and automatic mipmap generation if neccesary
if (params.mipmap)
{
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, mipmapLevel - 1);
glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_TRUE);
}
else
{
// Has to be set to 0 because no mipmaps are generated
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_BASE_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0);
glTexParameteri(GL_TEXTURE_2D, GL_GENERATE_MIPMAP, GL_FALSE);
}
// Set anisotropy level if available
if (m_anisotropyAvailable)
{
float level = Math::Min(m_maxAnisotropy, CEngine::GetInstance().GetTextureAnisotropyLevel());
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, level);
}
bool convert = false;
GLenum sourceFormat = 0;
if (params.format == TEX_IMG_RGB)
{
sourceFormat = GL_RGB;
result.alpha = false;
}
else if (params.format == TEX_IMG_BGR)
{
sourceFormat = GL_BGR;
result.alpha = false;
}
else if (params.format == TEX_IMG_RGBA)
{
sourceFormat = GL_RGBA;
result.alpha = true;
}
else if (params.format == TEX_IMG_BGRA)
{
sourceFormat = GL_BGRA;
result.alpha = true;
}
else if (params.format == TEX_IMG_AUTO)
{
if (data->surface->format->BytesPerPixel == 4)
{
if ((data->surface->format->Amask == 0xFF000000) &&
(data->surface->format->Rmask == 0x00FF0000) &&
(data->surface->format->Gmask == 0x0000FF00) &&
(data->surface->format->Bmask == 0x000000FF))
{
sourceFormat = GL_BGRA;
result.alpha = true;
}
else if ((data->surface->format->Amask == 0xFF000000) &&
(data->surface->format->Bmask == 0x00FF0000) &&
(data->surface->format->Gmask == 0x0000FF00) &&
(data->surface->format->Rmask == 0x000000FF))
{
sourceFormat = GL_RGBA;
result.alpha = true;
}
else
{
sourceFormat = GL_RGBA;
convert = true;
}
}
else if (data->surface->format->BytesPerPixel == 3)
{
if ((data->surface->format->Rmask == 0xFF0000) &&
(data->surface->format->Gmask == 0x00FF00) &&
(data->surface->format->Bmask == 0x0000FF))
{
sourceFormat = GL_BGR;
result.alpha = false;
}
else if ((data->surface->format->Bmask == 0xFF0000) &&
(data->surface->format->Gmask == 0x00FF00) &&
(data->surface->format->Rmask == 0x0000FF))
{
sourceFormat = GL_RGB;
result.alpha = false;
}
else
{
sourceFormat = GL_RGBA;
convert = true;
}
}
else {
GetLogger()->Error("Unknown data surface format");
assert(false);
}
}
else
assert(false);
SDL_Surface* actualSurface = data->surface;
SDL_Surface* convertedSurface = nullptr;
if (convert)
{
SDL_PixelFormat format;
format.BytesPerPixel = 4;
format.BitsPerPixel = 32;
format.alpha = 0;
format.colorkey = 0;
format.Aloss = format.Bloss = format.Gloss = format.Rloss = 0;
format.Amask = 0xFF000000;
format.Ashift = 24;
format.Bmask = 0x00FF0000;
format.Bshift = 16;
format.Gmask = 0x0000FF00;
format.Gshift = 8;
format.Rmask = 0x000000FF;
format.Rshift = 0;
format.palette = nullptr;
convertedSurface = SDL_ConvertSurface(data->surface, &format, SDL_SWSURFACE);
if (convertedSurface != nullptr)
actualSurface = convertedSurface;
}
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, actualSurface->w, actualSurface->h,
0, sourceFormat, GL_UNSIGNED_BYTE, actualSurface->pixels);
SDL_FreeSurface(convertedSurface);
// Restore the previous state of 1st stage
glBindTexture(GL_TEXTURE_2D, m_currentTextures[0].id);
if (! m_texturesEnabled[0])
glDisable(GL_TEXTURE_2D);
return result;
}
Texture CGL21Device::CreateDepthTexture(int width, int height, int depth)
{
Texture result;
result.alpha = false;
result.size.x = width;
result.size.y = height;
// Use & enable 1st texture stage
glActiveTexture(GL_TEXTURE0);
glGenTextures(1, &result.id);
glBindTexture(GL_TEXTURE_2D, result.id);
GLuint format = GL_DEPTH_COMPONENT;
switch (depth)
{
case 16:
format = GL_DEPTH_COMPONENT16;
break;
case 24:
format = GL_DEPTH_COMPONENT24;
break;
case 32:
format = GL_DEPTH_COMPONENT32;
break;
}
glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, GL_DEPTH_COMPONENT, GL_INT, nullptr);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE, GL_COMPARE_R_TO_TEXTURE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC, GL_LEQUAL);
float color[] = { 1.0f, 1.0f, 1.0f, 1.0f };
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, color);
glBindTexture(GL_TEXTURE_2D, m_currentTextures[0].id);
return result;
}
void CGL21Device::DestroyTexture(const Texture &texture)
{
// Unbind the texture if in use anywhere
for (int index = 0; index < static_cast<int>( m_currentTextures.size() ); ++index)
{
if (m_currentTextures[index] == texture)
SetTexture(index, Texture()); // set to invalid texture
}
glDeleteTextures(1, &texture.id);
auto it = m_allTextures.find(texture);
if (it != m_allTextures.end())
m_allTextures.erase(it);
}
void CGL21Device::DestroyAllTextures()
{
// Unbind all texture stages
for (int index = 0; index < static_cast<int>( m_currentTextures.size() ); ++index)
SetTexture(index, Texture());
for (auto it = m_allTextures.begin(); it != m_allTextures.end(); ++it)
glDeleteTextures(1, &(*it).id);
m_allTextures.clear();
}
int CGL21Device::GetMaxTextureStageCount()
{
return m_currentTextures.size();
}
/**
If \a texture is invalid, unbinds the given texture.
If valid, binds the texture and enables the given texture stage.
The setting is remembered, even if texturing is disabled at the moment. */
void CGL21Device::SetTexture(int index, const Texture &texture)
{
assert(index >= 0 && index < static_cast<int>( m_currentTextures.size() ));
bool same = m_currentTextures[index].id == texture.id;
m_currentTextures[index] = texture; // remember the new value
if (same)
return; // nothing to do
glActiveTexture(GL_TEXTURE0 + index);
glBindTexture(GL_TEXTURE_2D, texture.id);
// Params need to be updated for the new bound texture
UpdateTextureParams(index);
UpdateTextureStatus();
}
void CGL21Device::SetTexture(int index, unsigned int textureId)
{
assert(index >= 0 && index < static_cast<int>( m_currentTextures.size() ));
if (m_currentTextures[index].id == textureId)
return; // nothing to do
m_currentTextures[index].id = textureId;
glActiveTexture(GL_TEXTURE0 + index);
glBindTexture(GL_TEXTURE_2D, textureId);
// Params need to be updated for the new bound texture
UpdateTextureParams(index);
UpdateTextureStatus();
}
void CGL21Device::SetTextureEnabled(int index, bool enabled)
{
assert(index >= 0 && index < static_cast<int>( m_currentTextures.size() ));
bool same = m_texturesEnabled[index] == enabled;
m_texturesEnabled[index] = enabled;
if (same)
return; // nothing to do
glUniform1i(uni_TextureEnabled[index], enabled ? 1 : 0);
//UpdateTextureStatus();
}
void CGL21Device::UpdateTextureStatus()
{
glUniform1i(uni_TextureEnabled[0], m_currentTextures[0].id != 0 ? 1 : 0);
/*
bool enabled = m_texturesEnabled[0] && m_currentTextures[0].id != 0;
glUniform1i(uni_PrimaryTextureEnabled, enabled ? 1 : 0);
enabled = m_texturesEnabled[1] && m_currentTextures[1].id != 0;
glUniform1i(uni_SecondaryTextureEnabled, enabled ? 1 : 0);
enabled = m_texturesEnabled[2] && m_currentTextures[2].id != 0;
glUniform1i(uni_ShadowTextureEnabled, enabled ? 1 : 0);
*/
}
2015-06-01 15:21:10 +00:00
inline void CGL21Device::BindVBO(GLint vbo)
{
if (m_currentVBO == vbo) return;
glBindBuffer(GL_ARRAY_BUFFER, vbo);
m_currentVBO = vbo;
}
2015-05-27 20:12:02 +00:00
/**
Sets the texture parameters for the given texture stage.
If the given texture was not set (bound) yet, nothing happens.
The settings are remembered, even if texturing is disabled at the moment. */
void CGL21Device::SetTextureStageParams(int index, const TextureStageParams &params)
{
assert(index >= 0 && index < static_cast<int>( m_currentTextures.size() ));
// Remember the settings
m_textureStageParams[index] = params;
UpdateTextureParams(index);
}
void CGL21Device::SetTextureCoordGeneration(int index, TextureGenerationParams &params)
{
/*
glActiveTexture(GL_TEXTURE0 + index);
for (int i = 0; i < 4; i++)
{
GLuint texCoordGen = TranslateTextureCoordinateGen(i);
GLuint texCoord = TranslateTextureCoordinate(i);
switch (params.coords[i].mode)
{
case TEX_GEN_NONE:
glDisable(texCoordGen);
break;
case TEX_GEN_OBJECT_LINEAR:
glEnable(texCoordGen);
glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_OBJECT_LINEAR);
glTexGenfv(texCoord, GL_OBJECT_PLANE, params.coords[i].plane);
break;
case TEX_GEN_EYE_LINEAR:
glEnable(texCoordGen);
glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_EYE_LINEAR);
glTexGenfv(texCoord, GL_EYE_PLANE, params.coords[i].plane);
break;
case TEX_GEN_SPHERE_MAP:
glEnable(texCoordGen);
glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_SPHERE_MAP);
break;
case TEX_GEN_NORMAL_MAP:
glEnable(texCoordGen);
glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_NORMAL_MAP);
break;
case TEX_GEN_REFLECTION_MAP:
glEnable(texCoordGen);
glTexGeni(texCoord, GL_TEXTURE_GEN_MODE, GL_REFLECTION_MAP);
break;
}
}
// */
}
void CGL21Device::UpdateTextureParams(int index)
{
assert(index >= 0 && index < static_cast<int>( m_currentTextures.size() ));
// Don't actually do anything if texture not set
if (! m_currentTextures[index].Valid())
return;
const TextureStageParams &params = m_textureStageParams[index];
glActiveTexture(GL_TEXTURE0 + index);
if (params.wrapS == TEX_WRAP_CLAMP)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
else if (params.wrapS == TEX_WRAP_CLAMP_TO_BORDER)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
else if (params.wrapS == TEX_WRAP_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
else assert(false);
if (params.wrapT == TEX_WRAP_CLAMP)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
else if (params.wrapT == TEX_WRAP_CLAMP_TO_BORDER)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
else if (params.wrapT == TEX_WRAP_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
else assert(false);
glTexEnvfv(GL_TEXTURE_ENV, GL_TEXTURE_ENV_COLOR, params.factor.Array());
// To save some trouble
if ( (params.colorOperation == TEX_MIX_OPER_DEFAULT) &&
(params.alphaOperation == TEX_MIX_OPER_DEFAULT) )
{
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
goto after_tex_operations;
}
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
// Only these modes of getting color & alpha are used
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_RGB, GL_SRC_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND0_ALPHA, GL_SRC_ALPHA);
glTexEnvi(GL_TEXTURE_ENV, GL_OPERAND1_ALPHA, GL_SRC_ALPHA);
// Color operation
if (params.colorOperation == TEX_MIX_OPER_DEFAULT)
{
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE);
goto after_tex_color;
}
else if (params.colorOperation == TEX_MIX_OPER_REPLACE)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_REPLACE);
else if (params.colorOperation == TEX_MIX_OPER_MODULATE)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
else if (params.colorOperation == TEX_MIX_OPER_ADD)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_ADD);
else if (params.colorOperation == TEX_MIX_OPER_SUBTRACT)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_SUBTRACT);
else assert(false);
// Color arg1
if (params.colorArg1 == TEX_MIX_ARG_TEXTURE)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE);
else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_0)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE0);
else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_1)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE1);
else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_2)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE2);
else if (params.colorArg1 == TEX_MIX_ARG_TEXTURE_3)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_TEXTURE3);
else if (params.colorArg1 == TEX_MIX_ARG_COMPUTED_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PREVIOUS);
else if (params.colorArg1 == TEX_MIX_ARG_SRC_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PRIMARY_COLOR);
else if (params.colorArg1 == TEX_MIX_ARG_FACTOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_CONSTANT);
else assert(false);
// Color arg2
if (params.colorArg2 == TEX_MIX_ARG_TEXTURE)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE);
else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_0)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE0);
else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_1)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE1);
else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_2)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE2);
else if (params.colorArg2 == TEX_MIX_ARG_TEXTURE_3)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_TEXTURE3);
else if (params.colorArg2 == TEX_MIX_ARG_COMPUTED_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PREVIOUS);
else if (params.colorArg2 == TEX_MIX_ARG_SRC_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_PRIMARY_COLOR);
else if (params.colorArg2 == TEX_MIX_ARG_FACTOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_RGB, GL_CONSTANT);
else assert(false);
after_tex_color:
// Alpha operation
if (params.alphaOperation == TEX_MIX_OPER_DEFAULT)
{
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE);
goto after_tex_operations;
}
else if (params.alphaOperation == TEX_MIX_OPER_REPLACE)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_REPLACE);
else if (params.alphaOperation == TEX_MIX_OPER_MODULATE)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
else if (params.alphaOperation == TEX_MIX_OPER_ADD)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_ADD);
else if (params.alphaOperation == TEX_MIX_OPER_SUBTRACT)
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_SUBTRACT);
else assert(false);
// Alpha arg1
if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE);
else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_0)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE0);
else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_1)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE1);
else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_2)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE2);
else if (params.alphaArg1 == TEX_MIX_ARG_TEXTURE_3)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_TEXTURE3);
else if (params.alphaArg1 == TEX_MIX_ARG_COMPUTED_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PREVIOUS);
else if (params.alphaArg1 == TEX_MIX_ARG_SRC_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR);
else if (params.alphaArg1 == TEX_MIX_ARG_FACTOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_CONSTANT);
else assert(false);
// Alpha arg2
if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE);
else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_0)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE0);
else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_1)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE1);
else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_2)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE2);
else if (params.alphaArg2 == TEX_MIX_ARG_TEXTURE_3)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_TEXTURE3);
else if (params.alphaArg2 == TEX_MIX_ARG_COMPUTED_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PREVIOUS);
else if (params.alphaArg2 == TEX_MIX_ARG_SRC_COLOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_PRIMARY_COLOR);
else if (params.alphaArg2 == TEX_MIX_ARG_FACTOR)
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE1_ALPHA, GL_CONSTANT);
else assert(false);
after_tex_operations: ;
}
void CGL21Device::SetTextureStageWrap(int index, TexWrapMode wrapS, TexWrapMode wrapT)
{
assert(index >= 0 && index < static_cast<int>( m_currentTextures.size() ));
// Remember the settings
m_textureStageParams[index].wrapS = wrapS;
m_textureStageParams[index].wrapT = wrapT;
// Don't actually do anything if texture not set
if (! m_currentTextures[index].Valid())
return;
glActiveTexture(GL_TEXTURE0 + index);
if (wrapS == TEX_WRAP_CLAMP)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
else if (wrapS == TEX_WRAP_CLAMP_TO_BORDER)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
else if (wrapS == TEX_WRAP_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
else assert(false);
if (wrapT == TEX_WRAP_CLAMP)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
else if (wrapT == TEX_WRAP_CLAMP_TO_BORDER)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
else if (wrapT == TEX_WRAP_REPEAT)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
else assert(false);
}
void CGL21Device::DrawPrimitive(PrimitiveType type, const Vertex *vertices, int vertexCount,
Color color)
{
2015-06-01 15:21:10 +00:00
BindVBO(0);
2015-05-27 20:12:02 +00:00
Vertex* vs = const_cast<Vertex*>(vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(Vertex), reinterpret_cast<GLfloat*>(&vs[0].coord));
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, sizeof(Vertex), reinterpret_cast<GLfloat*>(&vs[0].normal));
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), reinterpret_cast<GLfloat*>(&vs[0].texCoord));
glColor4fv(color.Array());
glDrawArrays(TranslateGfxPrimitive(type), 0, vertexCount);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE0
}
void CGL21Device::DrawPrimitive(PrimitiveType type, const VertexTex2 *vertices, int vertexCount,
Color color)
{
2015-06-01 15:21:10 +00:00
BindVBO(0);
2015-05-27 20:12:02 +00:00
VertexTex2* vs = const_cast<VertexTex2*>(vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast<GLfloat*>(&vs[0].coord));
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, sizeof(VertexTex2), reinterpret_cast<GLfloat*>(&vs[0].normal));
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast<GLfloat*>(&vs[0].texCoord));
glClientActiveTexture(GL_TEXTURE1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), reinterpret_cast<GLfloat*>(&vs[0].texCoord2));
glColor4fv(color.Array());
glDrawArrays(TranslateGfxPrimitive(type), 0, vertexCount);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE1
glClientActiveTexture(GL_TEXTURE0);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
void CGL21Device::DrawPrimitive(PrimitiveType type, const VertexCol *vertices, int vertexCount)
{
2015-06-01 15:21:10 +00:00
BindVBO(0);
2015-05-27 20:12:02 +00:00
VertexCol* vs = const_cast<VertexCol*>(vertices);
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(VertexCol), reinterpret_cast<GLfloat*>(&vs[0].coord));
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_FLOAT, sizeof(VertexCol), reinterpret_cast<GLfloat*>(&vs[0].color));
glDrawArrays(TranslateGfxPrimitive(type), 0, vertexCount);
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
}
unsigned int CGL21Device::CreateStaticBuffer(PrimitiveType primitiveType, const Vertex* vertices, int vertexCount)
{
unsigned int id = ++m_lastVboId;
VboObjectInfo info;
info.primitiveType = primitiveType;
info.vertexType = VERTEX_TYPE_NORMAL;
info.vertexCount = vertexCount;
info.bufferId = 0;
info.size = vertexCount * sizeof(Vertex);
glGenBuffers(1, &info.bufferId);
2015-06-01 15:21:10 +00:00
BindVBO(info.bufferId);
2015-05-27 20:12:02 +00:00
glBufferData(GL_ARRAY_BUFFER, info.size, vertices, GL_STATIC_DRAW);
m_vboObjects[id] = info;
return id;
}
unsigned int CGL21Device::CreateStaticBuffer(PrimitiveType primitiveType, const VertexTex2* vertices, int vertexCount)
{
unsigned int id = ++m_lastVboId;
VboObjectInfo info;
info.primitiveType = primitiveType;
info.vertexType = VERTEX_TYPE_TEX2;
info.vertexCount = vertexCount;
info.bufferId = 0;
info.size = vertexCount * sizeof(VertexTex2);
glGenBuffers(1, &info.bufferId);
2015-06-01 15:21:10 +00:00
BindVBO(info.bufferId);
2015-05-27 20:12:02 +00:00
glBufferData(GL_ARRAY_BUFFER, info.size, vertices, GL_STATIC_DRAW);
m_vboObjects[id] = info;
return id;
}
unsigned int CGL21Device::CreateStaticBuffer(PrimitiveType primitiveType, const VertexCol* vertices, int vertexCount)
{
unsigned int id = ++m_lastVboId;
VboObjectInfo info;
info.primitiveType = primitiveType;
info.vertexType = VERTEX_TYPE_COL;
info.vertexCount = vertexCount;
info.bufferId = 0;
info.size = vertexCount * sizeof(VertexCol);
glGenBuffers(1, &info.bufferId);
2015-06-01 15:21:10 +00:00
BindVBO(info.bufferId);
2015-05-27 20:12:02 +00:00
glBufferData(GL_ARRAY_BUFFER, info.size, vertices, GL_STATIC_DRAW);
m_vboObjects[id] = info;
return id;
}
void CGL21Device::UpdateStaticBuffer(unsigned int bufferId, PrimitiveType primitiveType, const Vertex* vertices, int vertexCount)
{
auto it = m_vboObjects.find(bufferId);
if (it == m_vboObjects.end())
return;
int newSize = vertexCount * sizeof(Vertex);
VboObjectInfo& info = (*it).second;
info.primitiveType = primitiveType;
info.vertexType = VERTEX_TYPE_NORMAL;
info.vertexCount = vertexCount;
2015-06-01 15:21:10 +00:00
BindVBO(info.bufferId);
2015-05-27 20:12:02 +00:00
if (info.size < newSize)
{
glBufferData(GL_ARRAY_BUFFER, newSize, vertices, GL_STATIC_DRAW);
info.size = newSize;
}
else
{
glBufferSubData(GL_ARRAY_BUFFER, 0, newSize, vertices);
}
}
void CGL21Device::UpdateStaticBuffer(unsigned int bufferId, PrimitiveType primitiveType, const VertexTex2* vertices, int vertexCount)
{
auto it = m_vboObjects.find(bufferId);
if (it == m_vboObjects.end())
return;
VboObjectInfo& info = (*it).second;
info.primitiveType = primitiveType;
info.vertexType = VERTEX_TYPE_TEX2;
info.vertexCount = vertexCount;
int newSize = vertexCount * sizeof(VertexTex2);
2015-06-01 15:21:10 +00:00
BindVBO(info.bufferId);
2015-05-27 20:12:02 +00:00
if (info.size < newSize)
{
glBufferData(GL_ARRAY_BUFFER, newSize, vertices, GL_STATIC_DRAW);
info.size = newSize;
}
else
{
glBufferSubData(GL_ARRAY_BUFFER, 0, newSize, vertices);
}
}
void CGL21Device::UpdateStaticBuffer(unsigned int bufferId, PrimitiveType primitiveType, const VertexCol* vertices, int vertexCount)
{
auto it = m_vboObjects.find(bufferId);
if (it == m_vboObjects.end())
return;
VboObjectInfo& info = (*it).second;
info.primitiveType = primitiveType;
info.vertexType = VERTEX_TYPE_COL;
info.vertexCount = vertexCount;
int newSize = vertexCount * sizeof(VertexCol);
2015-06-01 15:21:10 +00:00
BindVBO(info.bufferId);
2015-05-27 20:12:02 +00:00
if (info.size < newSize)
{
glBufferData(GL_ARRAY_BUFFER, newSize, vertices, GL_STATIC_DRAW);
info.size = newSize;
}
else
{
glBufferSubData(GL_ARRAY_BUFFER, 0, newSize, vertices);
}
}
void CGL21Device::DrawStaticBuffer(unsigned int bufferId)
{
auto it = m_vboObjects.find(bufferId);
if (it == m_vboObjects.end())
return;
glEnable(GL_VERTEX_ARRAY);
2015-06-01 15:21:10 +00:00
BindVBO((*it).second.bufferId);
2015-05-27 20:12:02 +00:00
if ((*it).second.vertexType == VERTEX_TYPE_NORMAL)
{
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(Vertex), static_cast<char*>(nullptr) + offsetof(Vertex, coord));
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, sizeof(Vertex), static_cast<char*>(nullptr) + offsetof(Vertex, normal));
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(Vertex), static_cast<char*>(nullptr) + offsetof(Vertex, texCoord));
}
else if ((*it).second.vertexType == VERTEX_TYPE_TEX2)
{
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(VertexTex2), static_cast<char*>(nullptr) + offsetof(VertexTex2, coord));
glEnableClientState(GL_NORMAL_ARRAY);
glNormalPointer(GL_FLOAT, sizeof(VertexTex2), static_cast<char*>(nullptr) + offsetof(VertexTex2, normal));
glClientActiveTexture(GL_TEXTURE0);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), static_cast<char*>(nullptr) + offsetof(VertexTex2, texCoord));
glClientActiveTexture(GL_TEXTURE1);
glEnableClientState(GL_TEXTURE_COORD_ARRAY);
glTexCoordPointer(2, GL_FLOAT, sizeof(VertexTex2), static_cast<char*>(nullptr) + offsetof(VertexTex2, texCoord2));
}
else if ((*it).second.vertexType == VERTEX_TYPE_COL)
{
glEnableClientState(GL_VERTEX_ARRAY);
glVertexPointer(3, GL_FLOAT, sizeof(VertexCol), static_cast<char*>(nullptr) + offsetof(VertexCol, coord));
glEnableClientState(GL_COLOR_ARRAY);
glColorPointer(4, GL_FLOAT, sizeof(VertexCol), static_cast<char*>(nullptr) + offsetof(VertexCol, color));
}
GLenum mode = TranslateGfxPrimitive((*it).second.primitiveType);
glDrawArrays(mode, 0, (*it).second.vertexCount);
if ((*it).second.vertexType == VERTEX_TYPE_NORMAL)
{
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE0
}
else if ((*it).second.vertexType == VERTEX_TYPE_TEX2)
{
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_NORMAL_ARRAY);
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // GL_TEXTURE1
glClientActiveTexture(GL_TEXTURE0);
glDisableClientState(GL_TEXTURE_COORD_ARRAY);
}
else if ((*it).second.vertexType == VERTEX_TYPE_COL)
{
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY);
}
glDisable(GL_VERTEX_ARRAY);
}
void CGL21Device::DestroyStaticBuffer(unsigned int bufferId)
{
auto it = m_vboObjects.find(bufferId);
if (it == m_vboObjects.end())
return;
2015-06-01 15:21:10 +00:00
if (m_currentVBO == (*it).second.bufferId)
BindVBO(0);
2015-05-27 20:12:02 +00:00
glDeleteBuffers(1, &(*it).second.bufferId);
m_vboObjects.erase(it);
}
/* Based on libwine's implementation */
int CGL21Device::ComputeSphereVisibility(const Math::Vector &center, float radius)
{
Math::Matrix m;
m = Math::MultiplyMatrices(m_worldMat, m);
m = Math::MultiplyMatrices(m_viewMat, m);
Math::Matrix sc;
Math::LoadScaleMatrix(sc, Math::Vector(1.0f, 1.0f, -1.0f));
m = Math::MultiplyMatrices(sc, m);
m = Math::MultiplyMatrices(m_projectionMat, m);
Math::Vector vec[6];
float originPlane[6];
// Left plane
vec[0].x = m.Get(4, 1) + m.Get(1, 1);
vec[0].y = m.Get(4, 2) + m.Get(1, 2);
vec[0].z = m.Get(4, 3) + m.Get(1, 3);
float l1 = vec[0].Length();
vec[0].Normalize();
originPlane[0] = (m.Get(4, 4) + m.Get(1, 4)) / l1;
// Right plane
vec[1].x = m.Get(4, 1) - m.Get(1, 1);
vec[1].y = m.Get(4, 2) - m.Get(1, 2);
vec[1].z = m.Get(4, 3) - m.Get(1, 3);
float l2 = vec[1].Length();
vec[1].Normalize();
originPlane[1] = (m.Get(4, 4) - m.Get(1, 4)) / l2;
// Bottom plane
vec[2].x = m.Get(4, 1) + m.Get(2, 1);
vec[2].y = m.Get(4, 2) + m.Get(2, 2);
vec[2].z = m.Get(4, 3) + m.Get(2, 3);
float l3 = vec[2].Length();
vec[2].Normalize();
originPlane[2] = (m.Get(4, 4) + m.Get(2, 4)) / l3;
// Top plane
vec[3].x = m.Get(4, 1) - m.Get(2, 1);
vec[3].y = m.Get(4, 2) - m.Get(2, 2);
vec[3].z = m.Get(4, 3) - m.Get(2, 3);
float l4 = vec[3].Length();
vec[3].Normalize();
originPlane[3] = (m.Get(4, 4) - m.Get(2, 4)) / l4;
// Front plane
vec[4].x = m.Get(4, 1) + m.Get(3, 1);
vec[4].y = m.Get(4, 2) + m.Get(3, 2);
vec[4].z = m.Get(4, 3) + m.Get(3, 3);
float l5 = vec[4].Length();
vec[4].Normalize();
originPlane[4] = (m.Get(4, 4) + m.Get(3, 4)) / l5;
// Back plane
vec[5].x = m.Get(4, 1) - m.Get(3, 1);
vec[5].y = m.Get(4, 2) - m.Get(3, 2);
vec[5].z = m.Get(4, 3) - m.Get(3, 3);
float l6 = vec[5].Length();
vec[5].Normalize();
originPlane[5] = (m.Get(4, 4) - m.Get(3, 4)) / l6;
int result = 0;
if (InPlane(vec[0], originPlane[0], center, radius))
result |= FRUSTUM_PLANE_LEFT;
if (InPlane(vec[1], originPlane[1], center, radius))
result |= FRUSTUM_PLANE_RIGHT;
if (InPlane(vec[2], originPlane[2], center, radius))
result |= FRUSTUM_PLANE_BOTTOM;
if (InPlane(vec[3], originPlane[3], center, radius))
result |= FRUSTUM_PLANE_TOP;
if (InPlane(vec[4], originPlane[4], center, radius))
result |= FRUSTUM_PLANE_FRONT;
if (InPlane(vec[5], originPlane[5], center, radius))
result |= FRUSTUM_PLANE_BACK;
return result;
}
void CGL21Device::SetViewport(int x, int y, int width, int height)
{
glViewport(x, y, width, height);
}
void CGL21Device::SetRenderState(RenderState state, bool enabled)
{
if (state == RENDER_STATE_DEPTH_WRITE)
{
glDepthMask(enabled ? GL_TRUE : GL_FALSE);
return;
}
else if (state == RENDER_STATE_LIGHTING)
{
m_lighting = enabled;
glUniform1i(uni_LightingEnabled, enabled ? 1 : 0);
if (enabled)
{
for (int index = 0; index < static_cast<int>( m_lights.size() ); ++index)
UpdateLightPosition(index);
}
return;
}
else if (state == RENDER_STATE_OFFSCREEN_RENDERING)
{
if (!m_framebufferObject)
{
GetLogger()->Error("Cannot enable offscreen rendering without framebuffer object!\n");
return;
}
m_offscreenRenderingEnabled = enabled;
if (m_framebuffer == 0)
InitOffscreenBuffer(2048, 2048);
GLuint toBind = (enabled ? m_framebuffer : 0);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, toBind);
return;
}
else if (state == RENDER_STATE_ALPHA_TEST)
{
glUniform1i(uni_AlphaTestEnabled, enabled ? 1 : 0);
return;
}
else if (state == RENDER_STATE_FOG)
{
glUniform1i(uni_FogEnabled, enabled ? 1 : 0);
return;
}
GLenum flag = 0;
switch (state)
{
case RENDER_STATE_BLENDING: flag = GL_BLEND; break;
case RENDER_STATE_DEPTH_TEST: flag = GL_DEPTH_TEST; break;
case RENDER_STATE_ALPHA_TEST: flag = GL_ALPHA_TEST; break;
case RENDER_STATE_CULLING: flag = GL_CULL_FACE; break;
case RENDER_STATE_DEPTH_BIAS: flag = GL_POLYGON_OFFSET_FILL; break;
default: assert(false); break;
}
if (enabled)
glEnable(flag);
else
glDisable(flag);
}
void CGL21Device::SetColorMask(bool red, bool green, bool blue, bool alpha)
{
glColorMask(red, green, blue, alpha);
}
void CGL21Device::SetDepthTestFunc(CompFunc func)
{
glDepthFunc(TranslateGfxCompFunc(func));
}
void CGL21Device::SetDepthBias(float factor, float units)
{
glPolygonOffset(factor, units);
}
void CGL21Device::SetAlphaTestFunc(CompFunc func, float refValue)
{
glUniform1i(uni_AlphaReference, refValue);
}
void CGL21Device::SetBlendFunc(BlendFunc srcBlend, BlendFunc dstBlend)
{
glBlendFunc(TranslateGfxBlendFunc(srcBlend), TranslateGfxBlendFunc(dstBlend));
}
void CGL21Device::SetClearColor(const Color &color)
{
glClearColor(color.r, color.g, color.b, color.a);
}
void CGL21Device::SetGlobalAmbient(const Color &color)
{
glLightModelfv(GL_LIGHT_MODEL_AMBIENT, color.Array());
}
void CGL21Device::SetFogParams(FogMode mode, const Color &color, float start, float end, float density)
{
glUniform2f(uni_FogRange, start, end);
glUniform4f(uni_FogColor, color.r, color.g, color.b, color.a);
/*
if (mode == FOG_LINEAR) glFogi(GL_FOG_MODE, GL_LINEAR);
else if (mode == FOG_EXP) glFogi(GL_FOG_MODE, GL_EXP);
else if (mode == FOG_EXP2) glFogi(GL_FOG_MODE, GL_EXP2);
else assert(false);
glFogf(GL_FOG_START, start);
glFogf(GL_FOG_END, end);
glFogf(GL_FOG_DENSITY, density);
glFogfv(GL_FOG_COLOR, color.Array());
// */
}
void CGL21Device::SetCullMode(CullMode mode)
{
// Cull clockwise back faces, so front face is the opposite
// (assuming GL_CULL_FACE is GL_BACK)
if (mode == CULL_CW ) glFrontFace(GL_CCW);
else if (mode == CULL_CCW) glFrontFace(GL_CW);
else assert(false);
}
void CGL21Device::SetShadeModel(ShadeModel model)
{
if (model == SHADE_FLAT) glShadeModel(GL_FLAT);
else if (model == SHADE_SMOOTH) glShadeModel(GL_SMOOTH);
else assert(false);
}
void CGL21Device::SetShadowColor(float value)
{
glUniform1f(uni_ShadowColor, value);
}
void CGL21Device::SetFillMode(FillMode mode)
{
if (mode == FILL_POINT) glPolygonMode(GL_FRONT_AND_BACK, GL_POINT);
else if (mode == FILL_LINES) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE);
else if (mode == FILL_POLY) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
else assert(false);
}
void CGL21Device::InitOffscreenBuffer(int width, int height)
{
if (!m_framebufferObject) return;
width = Math::Min(width, m_maxRenderbufferSize);
height = Math::Min(height, m_maxRenderbufferSize);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
if (m_colorBuffer != 0)
glDeleteRenderbuffersEXT(1, &m_colorBuffer);
glGenRenderbuffersEXT(1, &m_colorBuffer);
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, m_colorBuffer);
glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_RGBA8, width, height);
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, 0);
if (m_depthBuffer != 0)
glDeleteRenderbuffersEXT(1, &m_depthBuffer);
glGenRenderbuffersEXT(1, &m_depthBuffer);
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, m_depthBuffer);
glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT24, width, height);
glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, 0);
if (m_framebuffer == 0)
glGenFramebuffersEXT(1, &m_framebuffer);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, m_framebuffer);
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_RENDERBUFFER_EXT, m_colorBuffer);
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, GL_DEPTH_ATTACHMENT_EXT, GL_RENDERBUFFER_EXT, m_depthBuffer);
glBindFramebufferEXT(GL_FRAMEBUFFER_EXT, 0);
GetLogger()->Info("Initialized offscreen buffer %dx%d\n", width, height);
}
void CGL21Device::SetRenderTexture(RenderTarget target, int texture)
{
if (!m_framebufferObject) return;
if (!m_offscreenRenderingEnabled) return;
GLenum attachment;
GLuint defaultBuffer;
switch (target)
{
case RENDER_TARGET_COLOR:
attachment = GL_COLOR_ATTACHMENT0_EXT;
defaultBuffer = m_colorBuffer;
break;
case RENDER_TARGET_DEPTH:
attachment = GL_DEPTH_ATTACHMENT_EXT;
defaultBuffer = m_depthBuffer;
break;
case RENDER_TARGET_STENCIL:
attachment = GL_STENCIL_ATTACHMENT_EXT;
defaultBuffer = 0;
break;
default: assert(false); break;
}
if (texture == 0) // unbind texture and bind default buffer
{
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, attachment, GL_TEXTURE_2D, 0, 0);
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, attachment, GL_RENDERBUFFER_EXT, defaultBuffer);
}
else // unbind default buffer and bind texture
{
glFramebufferRenderbufferEXT(GL_FRAMEBUFFER_EXT, attachment, GL_RENDERBUFFER_EXT, 0);
glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, attachment, GL_TEXTURE_2D, texture, 0);
}
}
void CGL21Device::CopyFramebufferToTexture(Texture& texture, int xOffset, int yOffset, int x, int y, int width, int height)
{
if (texture.id == 0) return;
// Use & enable 1st texture stage
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture.id);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, xOffset, yOffset, x, y, width, height);
// Restore previous texture
glBindTexture(GL_TEXTURE_2D, m_currentTextures[0].id);
}
void* CGL21Device::GetFrameBufferPixels()const{
GLubyte* pixels = new GLubyte[4 * m_config.size.x * m_config.size.y];
glReadPixels(0, 0, m_config.size.x, m_config.size.y, GL_RGBA, GL_UNSIGNED_BYTE, pixels);
unsigned int* p = static_cast<unsigned int*> ( static_cast<void*>(pixels) );
for (int i = 0; i < m_config.size.x * m_config.size.y; ++i)
p[i] |= 0xFF000000;
return static_cast<void*>(p);
}
} // namespace Gfx